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Introduction 

I stayed at the Zentralanstalt für Meteorologie und Geodynamik (ZAMG) for four weeks during 

which I was working on the analog-based post-processing method applied to a NWP model 

output for point forecasts. This is the continuation of previous work carried out during stay 1 

(13/11-09/12, 2017) and stay 2(02/02-03/03, 2018), where the basic algorithm in Python was 

written and the usability of the analogs method investigated for Austria. Thus, the method was 

already tested using the AROME deterministic model (1/1/2015-31/08/2017) and corresponding 

observations from 265 TAWES sites (1/1/2015-31/10/2017).  

 

PART 1: Deterministic analog forecast: Shifting time window 

During this stay results for modified analog-based post-processing method (mAN) are compared 

against previously developed analog-based post-processing method (AN) and against AROME 

deterministic model forecasts (AR). 

 

The analog ensemble method  

In the analogs method, the best-matching historical forecasts compared to the current 

prediction (analogs) corresponding to the identical lead time and (point) location can originate 

at any past date within a defined training period. The quality of the analog (the ‘’difference’’) is 

evaluated using a pre-defined metric (more information available at previous stay reports, Delle 

Monache et.al., 2013 and Odak Plenkovic et.al, 2018). The search is localized using a time 

window centered at the defined time of a day, in order to use limited number of degrees of 

freedom (as proposed in Van den Dool, 1989). Thus, using an NWP forecast at time t at a 



2 
 

specified location x the metrics include the differences between a set of variables, the 

predictors, centered at the lead time (i.e. t+6) and including one time step before and after (t+5 

and t+7), to account for shifts in the NWP forecast and  a trend. This part was implemented 

during the past two stays at ZAMG. 

 

Extending the search window 

The steps for the recent stay at ZAMG included broadening the time window mentioned above. 

Often, depending on the weather situation, similar analogs can be found more than one step 

before/after the selected lead time. Therefore, we decided to increases the window of 

opportunity for searching suitable analogs. Thus, the window was enlarged to include more 

time steps. In total five time steps are included. In previous example the search centered at lead 

time t+6, in addition to the t+5 and t+7 also includes the time steps centered at t+5 (incl. t+4, 

t+6) and t+7 (incl. t+6, t+8). For every selected forecast lead time at the given location, three 

possible metrics are calculated and then compared to find the best match out of these three. 

Only the best match is used afterwards, in order to avoid choosing subsequent highly correlated 

analogs. As members of the new analog ensemble (AnEn) the corresponding observations to the 

best-matching analogs are selected. Thus, in case of the most similar forecast for the selected 

forecast lead time +6 hours is the one of the search window t+5, the matching observations 

and, thus, the ensemble member, will be the observation corresponding to t+5.  

 

Scripts and optimization – deterministic analog forecast: Shifting time window 

Building the database for the training period is computationally the most demanding part of the 

entire analog-based scheme, so for this part the one already built is used. To speed up the 

process a little bit, it was copied and the stations with more than 50 % data missing were 

excluded. The database is now called:  MyData2015_6_reduced1.db, and the included 

stations are listed as included_stations in IOP.py module. This database contains all the 

2015-2016 data for the analog training. The database is based on sql, created using the python 

sqlite3 module. Included in the database are: 

● statnr – unique station number 
● idate – initialization date 
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● itime – initialization time 

● fhour – forecast hour (lead time) 
● rrr - precipitation 

● tl – 2-m temperature 
● ff – wind speed 
● dd – wind direction (deg) 
● rf – relative humidity 

● pred – red. pressure 

● ff_obs - wind speed observations 

The basic scripts for the analog method application (the forecasting of the mean of the 

ensemble: AN forecasting) were developed during my previous stay. The main script is the IOP-

analogs.py script. Besides loading the data from the training sql database and writing 

forecasts to another database the main parts are in the anen module from IOP.py. The 

module seeks for 20 most similar analogs, sorted by difference (similarity). All available 

predictors are used ( rrr, tl, ff, dd, rf, pred). Each predictor is normalized using the 

standard deviation, where wind direction is treated as circular variable. The width of the time 

window used in the analog search is fixed (+/- 1 lead time step). The difference metric is 

calculated applying the mymetrics function and the groupby object (grouped by 

initialization date – one by one forecast). Previously, this function was called once, calculating 

the differences by using the time window centered at the same lead time. During the recent 

stay, the scripts were modified (IOP-analogs2.py, IOP2.py). The mymetrics function is 

called three times, where the center of the time window for comparison is shifted to one lead 

time before/after. The data used as an input to mymetrics is shifted by the new function 

move_time_win. Outputs of mymetrics function are now three arrays converted to the 

dataframes. The second one (a_tmp2) is the ''regular'' time frame, while a_tmp1 and a_tmp3 

are the shifted ones. These dataframes are joined on indices (idate), so numpy array out of all 

the differences my_diff is used to determine minimum values. The algorithm picks the one 

with the smaller difference out of the three for every fixed historical forecast time. This way it 

cannot happen that there are more than one subsequential analog chosen within the ensemble. 

For instance, for the selected current forecast (i.e. 8.7.2017.) at lead time 12:00 it can not 

happen that two or three analogs date from the same day (i. e. 1.7.2015., centered at 12:00 and 

centered at 13:00). as the most similar ones out of 17 members. The analog with the best scores 
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is chosen as ensemble member. The reason for this constraint is that they would not be 

independent members.  

By using a moving window the possibility that the most similar situation happened sooner/later 

in a day is allowed. Thus, the measurement corresponding to the time window center of the 

most similar historical NWP is chosen as AnEn member, regardless whether the measurement 

happened exactly at the same time, time step sooner or later. However, this also means that 

this experiment is not a way to correct time shift error in NWP forecast. The NWP time shift (up 

to +/- one time step) should have already been corrected by the process of choosing a 

measurement (contrary to choosing historical forecast). The time window is not widening, but 

moving in time while maintaining the same width. Therefore the NWP time shift could only be 

corrected up to +/- one time step, same as when using only one static time window. This 

experiment is not expected to correct NWP time shift better.  

A solution had to be found for cases with missing forecast values at either the selected lead 

time or before/after. However, joining these dataframes with how=’left’- option (meaning 

the shape is set on the data with regular time frame window), this problem is solved. 

Now all it is left is to sort the metrics for every lead time and choose N smallest values. Data is 

grouped by forecast hour, having the same dataframe shape (dimensions) as before in order to 

use previously developed algorithms. The information whether the analogs come from the same 

time in a day (fhour) or not is lost (not needed). For every forecast hour the analog forecast 

contains 20 analog members. These are the corresponding observations 'ff_obs' to the 

smallest differences. The analog members are numbered ff1 – ff20 and saved in dataframe, 

together with AROME (AR) ff forecast, just as before. 

During the previous stay the time needed to execute the script for one forecast was 

approximately 14 minutes for all stations (265). When these adjustments were done, there 

were some memory issues and the script would crash. Therefore, additional optimization was 

needed. 

The for loop in the IOP-analogs2.py script that looped over stations was switched with 

groupby object. The “current” station info was included in the apply lambda function as 

x.statnr.unique()[0]. Also, after making this change, errors have occurred while writing 
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the data in the sql database. It seems that for some reason the columns with timestamp 

('idate','otime') were the reason, and the redefining them solved this problem: 

analogs['idate'] = pd.to_datetime(analogs['idate'], errors='coerce'). 

Additionally, the definition of nwp variable (“current NWP forecast”) is changed from 

dataframe to numpy array within mymetrics function. The time needed for one forecast (all 

stations) run is now less than 20 minutes which seems reasonable. The time needed to run the 

script without time window center shifting (“regular analogs”) is reduced from 14 minutes to 

less than 10.  

In Fig. 1 an example of forecasting using the regular AN method (left) and using the modified 

analog-based forecast (mAN) is shown. Ten analog ensemble members are used here with the 

ensemble mean forecast of the AN shown in red. Observations are denoted by the green line.  

The example of the modified analogs forecast, mAN, is shown in the right figure. The AN and 

mAN forecasts were initialized at 8 July 2017 at 00 UTC. One can see that the AN and mAN are 

very similar, but not the same, indicating that at least some of the most similar historical NWP 

situations really do happen sooner or later in the day.  

 

Figure 1. The example of the analog-based forecast for Hohe Warte station initiated at 
2017/07/08 (up to 48-h forecast lead time). The ensemble consists of 10 members. The spread 
of the ensemble is represented by boxplots, where circles represent the outliers. The red line 
represents AN (left subplot) and modified mAN (right subplot)– forecasting the mean of the 
ensemble. The results are compared to observations (green line).  
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Results– deterministic analog forecast: Shifting time window  

The algorithm was evaluated for two selected months. One winter, January 2017, and one 

summer month, July 2017, were chosen.  Data of the period 2015 – 2016 was used as training 

data. The analog method setup for AN and mAN is equal, consisting of 17 analog ensemble 

members. The procedure at this part is almost exactly the same as during previous stay – the 

forecasts are joined together with corresponding verifying observations by using IOP-

preplot-merge.py script. The mean of the ensembles (members 1-17) are calculated and 

added as a separate forecast ‘an’. The data needed for the verification procedure is saved to 

Jan_shifted_results.db and Jul_shifted_results.db databases, while the results 

for ‘regular’ analogs (as during the previous stay) are used from Results_Jan_2017.db and 

Results_Jul_2017.db. Note: the AR forecast within these databases needs to be checked 

every time, since during previous stay several database versions were produced. Some of these 

versions do not have ‘ff’ variable adjusted (it should be divided by 10 when loading from AR 

model files).   

The verification procedure is done by using modified verif Python package (more info at: 

https://github.com/WFRT/verif) Now the results for mAN are added to the previous winter-

summer comparison of the AR and AN forecast.  

It was already shown in the last report that (observed) wind speed, as well as its diurnal cycle is 

stronger in July than in January. The difference between the AN and mAN forecast is barely 

noticeable, the distribution looks very similar if boxplots or histograms are used. Therefore, 

even though all the results are produced as in previous report, they are not shown since they 

carry no new information. 

 Since the difference between AN and mAN is very small and can hardly be seen by using 

boxplots or histograms as before, the comparison of the mean values is now added for bias, 

root-mean-square-error (RMSE) and correlation coefficient (CC) measures at Tables 1 and 2.  
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Table 1. Average values of several verification measures for AR, AN and mAN forecasts for all 
available stations and all lead times during January. The best result among compared forecasts 
is underlined (the spread is better when closer to the RMSE value). 

January AR AN mAN 

Bias [m/s] 0.4794 -0.1019 -0.1093 

CC 0.5732 0.8358 0.8382 

RMSE [m/s] 2.1180 1.2890 1.2810 

Spread [m/s] x 1.2730 1.2610 

BSS (>5m/s) x 0.4906 0.4956 

CRPS x 0.6210 0.6169 

 

 

Table 2. Average values of several verification measures for AR, AN and mAN forecasts for all 
available stations and all lead times during June. The best result among compared forecasts is 
underlined (the spread is better when closer to the RMSE value). 

July AR AN mAN 

Bias [m/s] 0.3466 -0.0831 -0.0801 

CC 0.4373 0.7585 0.7599 

RMSE [m/s] 1.8020 1.1460 1.1430 

Spread [m/s] x 1.0800 1.0830 

BSS (>5m/s) x 0.3803 0.3836 

CRPSS x 0.5674 0.5664 
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Figure 2. The bias (upper), CC (middle) and RMSE (lower) for the AR, the AN and the mAN wind 
speed forecasts for January (left) and July (right) 2017. 
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The average values of bias and RMSE show that the AR error is smaller for July (than for 

January), but the CC is higher for January. The AN forecast exhibits better results on average 

than AR, for all the metrics used and both months tested. Further improvements are often 

achieved with mAN forecast, especially in July.  

The results (bias, RMSE and CC) depending on lead time are shown at Figure 2. Both AN and 

mAN results, compared with the AR results, show a great improvement achieved via post-

processing. The difference between the different variations of the analog approach is much less 

pronounced and rarely significant. However, it can be seen that the bias is somewhat smaller for 

the mAN forecast. For July it is smaller for majority of the forecast lead times, while the most 

evident difference is during the afternoon hours in January. For January RMSE also seems to be 

a bit smaller and CC higher for mAN forecast when compared to the AN forecasts. However, 

these improvements are not as evident for a summer month. 

Figure 3. The spatial distribution of the monthly mean (a, c) and maximum (b, d) of the observed 
wind speed in the January (upper) and July (down), 2017. 

 

 

b) 

d) c) 

a) 
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The wind speed was weak and moderate (i. e. < 8 m/s) for both January and July at majority of 

the stations (Figure 3). The average and the maximum monthly wind speed increases towards 

north-eastern part (Pannonian plate) for both January and July. The average wind speed across 

all stations is higher in January (2.76 m/s) than in July (2.27 m/s).  

 

 

 

 

 

Figure 4. The spatial distribution of the monthly mean bias for AR (upper) and AN (middle row) 
forecast, while the bottom figures show the difference between mAN and AN forecast. All 
figures correspond to the month of January (left) or July (right), 2017. 
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The AR forecast bias is slightly positive on average at majority of the stations, especially in 

January (Figure 4). In both winter and summer month, there is a positive bias in the northeast 

area (Pannonian plain) and near Warth for the AR forecast. Warth is small high-altitude 

municipality situated on the complex terrain near the border of the Vorarlberg and the Tyrol in 

the western Austria. The AN mean bias is smaller than for the AR forecast, showing that the 

method is able to improve raw NWP forecast. At the locations in the Pannonian plain the bias is 

slightly negative while at the Alps the bias is positive in January. Differences in bias between the 

AN and the mAN methods are small, therefore, the differences between these two are shown in 

the last row in Fig. 4. One can see that the bias is reduced in central Austria during January using 

the mAN method. When compared to the bias results shown in Figure 2, one can assume that 

this lower-value bias might correspond to the small positive bias in the AN forecast during 

winter afternoons.  

The correlation coefficient (CC) reduces its value from northeast area towards west and south-

west of Austria for any forecast tested (Figure 5). Also, the values are higher for the January 

than the July. This is regardless of the exact forecast and time of a year. Therefore, it could be 

concluded that the wind speed is less predictable towards the west and during winters. All 

forecasts have very low values in the Alps. The CC values as low as shown can suggest very 

unpredictable month, but also a potential error made in forecasting, loading the data or 

analysis. However, there is an evident improvement achieved with post-processing for January 

and especially July for both analog-based variations. Additionally, allowing flexible analog search 

time window, the results improve within the Alps area the most, especially during the winter 

month. 

The RMSE values seem to be slightly higher during January than in July for all the forecasts 

(Figure 6). The values for the monthly mean RMSE are higher for the AR than for the AN 

forecasts in both January and July cases. The error seems to be larger in the central Austria and 

in the south-western part of Austria for the AR forecast (especially for July), while there is a here 

is no obvious spatial distribution of error for the AN forecasts. The error difference between AN 

and mAN seem to be very small and there is no obvious spatial distribution.  
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Figure 5. The spatial distribution of the monthly mean correlation coefficient for AR (upper) and 
AN (middle row) forecast, while the bottom figures show the difference between mAN and AN 
forecast. All figures correspond to the month of January (left) or July (right), 2017. 
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Figure 6. The spatial distribution of the monthly RMSE for AR (upper) and AN (middle row) 
forecast, while the bottom figures show the difference between mAN and AN forecast. All 
figures correspond to the month of January (left) or July (right), 2017.  

 

 

 



14 
 

 

Figure 7. The the rank histograms for AN and mAN probabilistic forecasts at all available stations 
for January (left) and July (right), 2017. 

 

 

Figure 8. Spread-skill diagram for AN and mAN forecasts at all available stations for January 
(left) and July (right), 2017 

.  

Figure 9. The reliability diagram for AN and mAN probabilistic forecasts of wind speed to exceed 
5 m/s at all available stations for January (left) and July (right), 2017. 



15 
 

Finally, mAN forecast is compared to AN forecast using probabilistic verification scores that have 

not been computed during previous stay. The AN and mAN rank histogram shows slight 

underestimation for both months tested, which is consistent with slightly negative ensemble 

mean bias (Figure 7). There are no meaningful differences between AN and mAN at this point. 

The spread-skill diagram shows that AN and mAN error match the ensemble spread adequately 

for both months tested (Figure 8). The mAN result shows both error and spread reduction in 

January, while the mAN result for July is more similar to AN.  

The reliability diagrams for AN and mAN are almost indistinguishable (Figure 9), both forecasts 

showing good resolution and slight under-forecasting, especially for January.  

 

 

 

Figure 10. The Brier skill score (BSS) depending on lead time for AN and mAN probabilistic 
forecasts of wind speed to exceed 5 m/s at all available stations for January (left) and July 
(right), 2017. 



16 
 

 

Figure 11. Continuous rank probability score (CRPS) depending on lead time for AN and mAN 
probabilistic at all available stations for January (left) and July (right), 2017. 

 

 

The further mAN over AN forecast improvement is indicated by slightly higher Brier skill score 

(calculated for 5 m/s wind speed threshold) and lower continuous rank probability scores for 

January (Figures 10 and 11). The differences are small (and probably not significant in this 

experiment), but extend for the majority of lead times. The differences for the summer month 

are less pronounced. The BSS dependency on probabilistic forecast threshold (for wind speed to 

exceed) reveals that mAN and AN forecasts exhibit similar values for low and moderate wind 

(i.e. up to 10 m/s) (Figure 12). However, the probability of wind speed exceeding 10 m/s or 

more (this is climatologically less frequent event than low or moderate wind speed) is better 

predicted by mAN than AN. Even though these results are probably not significant at this point, 

they indicate that the true benefit from extending the “analog-search pool” (mAN) could be 

revealed in extended experiment. For instance would have shorter training period and 

concentrate on climatologically rarer events.  
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Figure 12. The Brier skill score (BSS) depending on wind speed threshold for AN and mAN 
probabilistic forecasts at all available stations for January (left) and July (right), 2017. 

 

Figure 13. The Relative Operating Curve (ROC) for AN and mAN probabilistic forecasts at all 
available stations for January (left) and July (right), 2017. 

 

Finally, Relative Operating Curve (ROC) diagram shows that both forecasts discriminate event 

(wind speed exceeding 5 m/s) from non-event better in January if compared to July. This is 

partially explained by the fact that this event occurs more often in January (can be seen at the 

reliability diagrams at Figure 9). There are no apparent differences among AN and mAN ROC 

curves.  
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PART 2: Probabilistic analog forecast input: Post-processing LAEF forecasts 

 

After testing the analog forecasts with AR deterministic input, next step is to test several 

different configurations of LAEF ensemble forecast input. The following configurations are 

tested: 

a) LA_Ws: raw LAEF wind speed ensemble forecast (17 members) 

b) AN_Ws: LAEF wind speed ensemble forecast used as predictors (17 predictors) 

c) AN_Me: The means of the LAEF ensemble forecast for the wind speed, direction, 

temperature (2 m), relative humidity, pressure and precipitation (6 predictors) 

d) AN_St: The means and the standard deviation of the LAEF ensemble forecast for the 

wind speed, direction, temperature (2 m), relative humidity, pressure and 

precipitation (12 predictors) 

e) AN_Al: All members of the LAEF ensemble forecast for the wind speed, direction, 

temperature (2 m), relative humidity, pressure and precipitation (6×17 predictors)  

f) AN_11: For every member of the LAEF ensemble forecast analog search includes the 

for the wind speed, direction, temperature (2 m), relative humidity, pressure and 

precipitation (6 predictors) among the same member historical forecasts. Therefore, 

in this member-by-member approach, 6 predictors are used, but the search 

algorithm is used 17 times for every forecast. This is the most demanding 

configuration at the moment. The code could be optimized if it would produce the 

best result. However, since that is not the case, it will not be done.  

 

If more than one meteorological variable is used as a predictor, the predictor variable choice 

corresponds to the previous case (AR deterministic input).  

The list of the stations is now reduced, due to more computational power needed. In total,  29 

stations are used, marked with following numbers:  

11007,11012, 11025, 11035, 11036, 11060, 11070, 11101, 11108, 11126, 11170, 11180, 11190, 

11198, 11204, 11216,11246, 11273, 11290, 11320, 11343, 11344, 11346, 11350, 11358, 11380, 

11383, 11384, 11389.  
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All the lists of stations can be found in ANENm_stationlist.py module, and this one is 

listed as included_stations_laef_reduced function. 

The time window is fixed and includes one lead time step before/after to include trend. The 

analog ensemble members are saved up to the 20 members, but testing is carried out for 17 

member ensemble as the LAEF ensemble consists of 17 members  (16 members plus one control 

member) and it is close to the optimal size which includes 15 members (as in Odak Plenkovic et 

al., 2018).  

 

Scripts and optimization - probabilistic analog forecast input: Post-processing LAEF forecasts 

Using an ensemble as input for the AN method involves the implementation of several 

databases for training.  The scripts for loading include the main program (depending on the 

exact input) and the module ANENm_loading_data.py. The main programs corresponding 

to the previously listed inputs are: 

a) ANEN_loading_laef_WS_ens.py   

b) and c) ANEN_loading_laef_means.py 

d) ANEN_loading_laef_all_reduced.py 

In the main program the path and name of the LAEF files to be loaded are being adjusted as well 

as the database name. Then the module ANENm_loading_data.py uploads the actual data 

by using appropriate one out of several functions (starting with “load”) depending on the 

forecast. The data is saved in a form of the numpy array first (due to computational reasons 

during loading and pasting the data needed). The separate function is made to transform the 

numpy array to dataframe with predefined column names after all the adjustments are done. 

These functions are also stored in ANENm_module and start with “np2df”. The 

ANEN_adjust_db.py script can be used if the database needs adjustment (i.e. data type or 

reducing number of stations). The databases containing the reduced list of stations used for 

testing are: 

a) TrainLaefWind2015_6_reduced.db 

b) and c) TrainLaefMean2015_6_reduced.db 

d) TrainLaefAll2015_6_reduced2.db 

Note: the 2015-11-30 LAEF files are corrupted and deleted for all the variables. 
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The analog ensemble forecasts are carried out using ANEN_analogs.py main program 

(except AN_11 forecast) and ANENm_analogsearch.py module. The analog ensemble 

(initial) forecasting dates (and lead times) correspond to the “currently” loaded AR forecast (the 

one to be post-processed) defined at the beginning of the script. The main program can be 

easily adjusted to be used in any listed experiment. The differences between configurations are: 

the input/output database names, predictors used (the name of the input dataframe columns 

used as predictors are listen in mycol variable), the number of circular variables c (they are 

always placed at the left side – the first columns) and function names from the module. For 

producing AN_11 forecasts ANEN_analogs.py is used. It is very similar to 

ANEN_analogs.py, but it calls the search algorithm for every LA_Ws member separately 

(using the same module). The module ANENm_analogsearch.py contains two functions – a 

simpler one adjusted for case a) anen_laef_ws where there are no circular variables 

included, and a more general one anen_laef_all that works for all the other cases. The 

output from the module is exactly as it was when using IOP-analogs.py script – 20 

members are saved and ordered from the most to the least similar to the current forecast. The 

results for January and June 2017 are stored and then merged with corresponding observations 

(IOP-preplot-merge2.py script), then stored again in the databases named “Res_” + 

forecast name + month. The same is done for the LAEF wind speed ensemble forecast (LA_Ws). 

The examples for these analog-based forecasts are plotted for the same station and date as at 

Figure 1 (Figure 14). 
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Figure 14. The example of four configurations (AN-Ws, AN-Me, AN-St, AN-Al) of the analog-
based forecast using the LAEF input for Hohe Warte station initiated at 2017/07/08 (up to 72-h 
forecast lead time). The ensemble is consisted of 10 members. The spread of the ensemble is 
represented by boxplots, where circles represent the outliers. The red line represents analog 
ensemble mean. The results are compared to observations (green line).  
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Results - probabilistic analog forecast input: Post-processing LAEF forecasts 

The evaluation of the probabilistic input gives new insights into the methodology. All new 

experiments show an improvement of the original LA_WS forecast with the analog approach 

(Tables 3 and 4). One can, too, clearly identify differences between the new methods.   

 

Table 3. Average values of several verification measures for LA_Ws and analog-based forecasts 
(AN_Ws, AN_Me, AN_St, AN_Al and AN_11) for all available stations and all lead times during 
January. The best result among compared forecasts is underlined (the spread is better when 
closer to the RMSE value). 

January LA_Ws AN_Ws AN_Me AN_St AN_11 AN_Al 

Bias [m/s] -0.1898 -0.0329 -0.1476 -0.1392 -0.0885 -0.1756 

CC 0.4681 0.8275 0.8517 0.8479 0.7783 0.8484 

Disp. Err-[m/s] 2.4427 1.6673 1.4541 1.4726 1.8063 1.4596 

STD bias [m/s] -1.1790 -0.3690 -0.6800 -0.6800 -0.6020 -0.7110 

RMSE [m/s] 2.7190 1.7080 1.6120 1.6280 1.9060 1.6330 

Spread [m/s] 0.7115 1.6330 1.6810 1.6660 1.5790 1.6670 

BSS (>5m/s) 0.0212 0.5156 0.5267 0.5226 0.4003 0.5200 

CRPS 1.5120 0.8026 0.7720 0.7706 0.9588 0.7799 

 

Table 4. Average values of several verification measures for LA_Ws and analog-based forecasts 
(AN_Ws, AN_Me, AN_St, AN_Al and AN_11 for all available stations and all lead times during 
July. The best result among compared forecasts is underlined (the spread is better when closer 
to the RMSE value). 

July LA_Ws AN_Ws AN_Me AN_St AN_11 AN_Al 

Bias [m/s] -0.2564 -0.1337 -0.1380 -0.1264 -0.1446 -0.1758 

CC 0.3850 0.7265 0.7572 0.7605 0.6814 0.7508 

Disp. Err-[m/s] 1.8521 1.4519 1.3240 1.3202 1.4941 1.3346 

STD bias [m/s] -0.9180 -0.4330 -0.5440 -0.5320 -0.593 -0.5600 

RMSE [m/s] 2.0830 1.5210 1.4380 1.4290 1.6140 1.4580 

Spread [m/s] 0.7720 1.3370 1.3660 1.3920 1.4050 1.3250 

BSS (>5m/s) 0.0666 0.3459 0.3730 0.3719 0.2660 0.3633 

CRPS 1.1310 0.7364 0.6965 0.6957 0.8049 0.7047 
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The observed average monthly wind speed is higher in January (2.76 m/s) than in July (2.27 

m/s), across all available stations and lead times. Additionally, standard deviation of the wind 

speed measurements is also higher on average in January (3.03 m/s) than in July (2.19 m/s).  

It is possible to specify the source of the error by decomposing the RMSE to the bias of the 

mean (or simply bias), bias of the standard deviation and dispersion (phase) error (e.g., Murphy 

1988; Horvath et al. 2012). In this work STD bias stands for the bias of the standard deviation for 

the ensemble mean (regardless of the ensemble spread). The average values of LA_Ws 

ensemble mean bias are small, showing only slight wind speed underestimation of 0.19 m/s in 

January and 0.25 m/s in July. The standard deviation of the measurements is underestimated by 

LA_Ws ensemble mean in both January (by 1.18 m/s) and July (by 0.92 m/s). The average CC 

value for the LA_Ws ensemble mean is higher in January than in July by 0.08. The average RMSE 

of LA_Ws ensemble mean is 2.72 m/s in January, while it is lower by 0.64 m/s in July (partially 

due to climatologically lower monthly wind speed). Since average bias of the mean is low, the 

dominant sources of error are dispersion error followed by the biased standard deviation of the 

LA_Ws ensemble mean.  

Every AN forecast (AN_Ws, AN_Me, AN_St, AN_Al and AN_11) ensemble means exhibit better 

results on average than AR, lowering all three error sources (measured by Bias, CC and STD bias) 

during both months tested. After the analog-based post-processing, dispersion error is even 

more dominant among error sources. AN_Ws is very successful in removing systematic errors 

(bias and STD bias), especially in January. However, AN_Me, AN_St and AN_Al are more 

successful than AN_Ws in removing predominant dispersion source of error for ensemble mean. 

The AN_Me exhibits the best overall results for the ensemble mean for January and AN_St for 

July. The AN_11 ensemble mean seems to be the least successful among AN forecasts.  

The LA-Ws ensemble forecast shows under-spread, with average spread lower than average 

RMSE for 2.01 m/s (January) and 1.31 m/s (July). The average spread matches average RMSE 

better after any analog-based post-processing. The AN_St exhibits the best spread among 

analog-based experiments (the closest value to average RMSE in January and second closest in 
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June), followed by AN_Me and AN_Al. The AN_11 exhibits the most under-spread ensembles 

among analog-based experiments. 

Brier Skill Score (BSS) is commonly used skill measure for probabilistic forecast of binary event. 

The binary event is often determined by threshold (i.e. 5 m/s) when evaluating wind speed 

forecasts. Then, the probability of exceeding that threshold is forecasted and evaluated. The 

observed frequency of wind speed exceeding 5 m/s event is higher (it is measured in 17 % 

cases) for January than for July (11 % cases). The 5 m/s threshold is chosen because it is a 

reasonably high while not being too rare to produce meaningful result. For example, wind 

exceeds 8 m/s in July only in 2 % cases, resulting in reliability diagrams that are harder to read 

and interpret. The BSS for LA_Ws probability forecast (for wind speed to exceed 5 m/s 

threshold) is 0.02 for January and 0.07 for July. The BSS is improved by any analog-based 

experiment tested in this work. This is especially the case in January, when the underlying 

climatology shows it is more common event than in July. The best BSS is achieved in AN_Me 

experiment for both months tested, followed closely by AN_St and AN_Al, while AN_Ws and 

especially AN_11 are somewhat less skillful.  

Continuous rank probability score (CRPS) is a summary metric that can be interpreted as the 

integral of the Brier score over all possible threshold values for the parameter under 

consideration. It is negatively oriented (the lower, the better) accuracy measure that is equal to 

the mean absolute error (MAE) for deterministic forecast, and also has a value of 0 for the 

perfect forecast. The LA_Ws shows higher CRPS (1.51) for January than for July (1.12). The CRPS 

value is improved (lowered) by any analog-based experiment, exhibiting better results for July 

when wind speed is lower on average than in January. The AN_St experiments show the best 

results in terms of CRPS, followed closely by AN_Me and AN_Al, while AN_Ws and AN_11 are 

not as successful.  

In addition to overall comparison, forecasts are also compared against lead time in terms of 

several verification metrics. Even when testing the dependency on the lead time, the 

differences between LA_Ws and analog approach (AN_Ws, AN_Me, AN_St, AN_Al and AN_11 

forecasts) are the least pronounced for the bias of the ensemble mean (compared to differences 
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in CC or RMSE). This is partially due to the fact that the bias for the LA_Ws forecast is small to 

begin with (just a slight underestimation of the wind speed) (Figure 15). The maximum LA_Ws 

underestimation at noon and early afternoon is almost completely removed by analog approach 

during January, while the slight LA_Ws underestimation of the wind speed during nighttime is 

similar among all the tested forecasts. The AN_Ws exhibits the smallest bias of the mean 

(smaller than the LAEF LA_Ws) for the January, while the other four AN forecasts produce 

similar result – somewhat smaller bias with less extreme values if compared to LA_Ws. For July, 

the improvement over LA_WS is more evident for all configurations tested. The first (daily) 

LA_Ws bias minimum is almost completely removed by all the AN forecasts, while the second 

minimum (in the evening) is reduced. The differences among AN experiments variations are less 

pronounced than in comparison with LA_Ws. However, it seems that the AN_WS is the least 

biased, while AN_Al underestimates the wind speed the most.  

Unlike the bias results, where the differences were subtle, the RMSE and CC show great 

improvement over LA_WS after using the analog post-processing method for both months 

tested, regardless of the exact AN experiment. The results among AN forecasts seem similar. 

The AN_Me, AN_St and AN_Al produce somewhat better results than AN_Ws and AN_11 for 

both months tested. At this point it seems that using more variables than one, but not 

necessarily all members of the ensemble shows better results. However, additional testing for 

the spread of these ensembles is something that needs to be done to better distinguish these 

subtle differences.  
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Figure 15. The bias (upper), RMSE (middle) and CC (lower) for the means of the ensemble of 
LAEF LA_WS forecasts (red line), the five different analog ensemble configurations, at all the 
stations tested for January (left) and July (right) 2017. The markers are set for the results 
significantly different from AN_Me forecast (0.05 sig. level). 
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Figure 16. Reliability diagrams for five different AN forecasts, compared to LAEF LA_Ws forecast 
during January 2017 at all station tested in this study. The dashed lines show 95% confidence 
interval. 

 

The reliability is tested for probability forecasts that the wind speed will exceed 5 m/s, which 

happens in 14 % cases tested, more often in January than in July. The LA_Ws ensemble is less 

reliable for January (Figure 16) when compared to July (Figure 17), and is, too, below the no-skill 

line for high probabilities forecasted during January. The ensemble based AN forecasts seem to 

be much more reliable than LA_Ws forecasts in all experiments, showing the skill for any 

forecasted probability. Small probabilities (i.e. less than 30 % chance for wind speed to exceed 5 

m/s) forecasted by the analog approach for all experiments are almost perfectly reliable, while 

the LA_Ws underestimates the probability. There are only small differences between different 

AN configurations, especially between AN_Me, AN_St and AN_Al. They slightly overestimate the 

middle-range probabilities (i.e. 50-80 % probability for the wind speed to exceed 5 m/s). 

Sometimes the high probabilities (i.e. 90 % chance) are overestimated by the AN. 
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Figure 17. Reliability diagrams for five different AN forecasts, compared to LAEF LA_Ws forecast 
during July 2017 at all station tested in this study. The dashed lines show 95% confidence 
interval. 

 

Figure 18. Relative operating characteristic curve for five different AN probabilistic forecasts (for 
wind speed to exceed 5 m/s), compared to LAEF LA_Ws forecast during January (left) and July 
2017 at all stations tested in this study. 
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method. This is especially the case with the AN_11 configuration which is the least reliable out 

of the investigated AN forecasts. However, the overestimation of the high probabilities is much 

less pronounced for any of the AN experiment, compared to LA_Ws ensemble result. Resolution 

is also higher for any AN forecast, compared to LA_Ws. Additionally, one can notice that the 

sharpness diagram (upper left corner of the reliability diagram) looks reasonable for both 

forecasts, but the LA_Ws seem to be a bit sharper than any AN forecast in  the experiments 

performed in this work, indicating higher tendency to forecast extreme probabilities. This is 

preferable because of better forecast usability if the forecasts are reliable. However, the AN 

forecasts are more accurate in terms of reliability.  

Relative operating characteristic (ROC) curve shows that applying the analog method to the raw 

LA_Ws improves the discrimination considerably using a threshold of 5 m/s (Fig. 18). Results for 

January are better than for July indicating that in the convective season most likely a higher 

resolved NWP model might add some additional information. Similar results are achieved for 

AN_Me, AN_St and AN_Al forecast, while the AN_Ws and AN_11 are less successful in 

distinguishing the distribution of the event (wind speed exceeding 5 m/s) from non-event 

distribution.  

The rank histogram shows under-dispersion or LA_Ws forecasts, especially for January (Figure 

19). This is not the case for the AN forecasts. The exception is AN_11 forecast, which exhibits 

some under-spread, also more pronounced for January than for July. The other AN forecasts 

produce very similar result, showing only slight underestimation of the wind speed values 

forecasted.  
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Figure 19. Rank histograms for five different AN forecasts (right), compared to LAEF LA_Ws (left) 
forecast during January (up) and July (down) 2017 at all station tested in this study. 

 

 

The spread skill diagrams confirm the LA_Ws forecast are under-dispersive, more during January 

than in July (Figure 20). The AN_Me forecast is significantly better for both months tested. It 

shows almost perfect agreement between the RMSE and spread during July, while there it is 

slightly over-dispersive during January. The other AN forecasts exhibit similar behavior, rarely 

producing significantly different result. The exceptions are AN_11 and AN_Ws, which for a 

certain lead times show significantly larger under-spread. 
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Figure 20. Spread-skill diagrams depending on lead time for AN_Me forecast compared to LAEF 
LA_Ws (left) and five different AN forecasts (right) during January (up) and July (down) 2017 at 
all station tested in this study. The markers denote the result significantly different from AN_Me 
forecast (0.05 sig. level).  
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Figure 21. Brier skill score depending on lead time for AN probabilistic forecasts (probability that 
the wind speed will exceed 5m/s), compared to LAEF LA_Ws during January (left) and July (right) 
2017 at all station tested in this study.  

 

Considering the Brier skill score of the probabilistic forecast for the wind speed exceeding 5 m/s, 

it can be noticed that the improvement of the AN over LA_Ws is noticeable for any of the 

experiments (Figure 21). The LA_Ws results are worse for January than for July, showing even a 

negative skill during nighttime. However, the improvement of the AN over LA_Ws forecast is 

more pronounced for January than for July. The AN results are quite similar, showing an 

expected decrease in skill for long lead times. The exception is AN_11 forecast, which is 

somewhat less successful in these experiments, especially for short lead times.   
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Figure 22. Brier skill score (up) and relative frequency (down) depending on a wind speed 
threshold for AN probabilistic forecasts compared to LAEF LA_Ws during January (left) and July 
(right) 2017 at all station tested in this study.  

 

 

 

Figure 23. Continuous rank probability score depending on a lead time for AN probabilistic 
forecast compared to LAEF (LA_Ws) during January (left) and July (right) 2017 at all stations 
tested in this study. 
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The majority of measured wind speed values during the selected months are in the order of 3 

m/s (30-40 % of measurements), while the wind speeds higher than 5 m/s or 10 m/s are rare 

(Figure 22). However, it is still very important to forecast the latter wind speeds because of their 

higher impact on people and property, wind energy potential and other fields. For this reason it 

is important that a probabilistic forecast is consistently good for several different thresholds. 

LA_Ws forecast is skillful (measured with Brier skill score – BSS) for wind speeds exceeding 5 

m/s, but shows much less skill (if any) for higher thresholds (7, 10, 12, 15, 18 and 20 m/s) in 

these two selected months. The AN probabilistic forecasts improve the result up to 15 m/s or 

higher for all the AN forecasts up to 15 m/s. Additionally, AN_Me, AN_St and AN_Al in January improve 

the LA_Ws result for all the thresholds tested (up to 20 m/s). The AN_Me, AN_St and AN_Al forecasts 

exhibit very similar result, while AN_Ws and AN_11 show a reduced skill. These results reveal a 

great potential for post-processing usage of analog-approach, even though one needs to be 

careful with the interpretation, since the number of occurrences of high wind speed (i.e. around 

20 m/s) is very small.   

The CRPS, as mentioned above, is a great overall measure that takes all the available thresholds 

into account while assessing the forecast skill. It The CRPS confirms that the LA_Ws forecast 

exhibits a higher skill during the afternoon than during nighttime and higher during July than 

during January (Figure 23). The AN forecast do not show a clear diurnal CRPS pattern, but it is 

more skillful during nighttime than during daytime. The improvement over LA_Ws forecast is 

greater in January since the LA_Ws is worse than in July. However, the AN results is overall 

better in July, when the LA_Ws, which also served as input, is better. These results imply that 

the best results are achieved when the input model is also working better. Also, AN_Me, AN_St 

and AN_Al show a bit better skill than AN_11 and AN_Ws. These results imply that there is a 

need to use more than one meteorological variable as predictor. This is due to better ability of 

the analog method to distinguish different seasonal and synoptic situations. Using a 1 by 1 

member analog search would not increase the skills of the raw probabilistic input as one would 

inherit undesirable properties of the input model such as under-dispersion and lower resolution 

issues. Finally, it is shown that using basic information of an input ensemble, such as ensemble 

mean and standard deviation, already improves the forecast skills. Furthermore, it is  
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Figure 24. The spatial distribution of the monthly mean bias for the LAEF LA_Ws forecast (left) 
and AN_Me forecast (right), during January (left) or July (right), 2017. 

 

 

Figure 25. The spatial distribution of the monthly mean RMSE for the LAEF LA_Ws forecast (left) 
and AN_Me forecast (right), during January (left) or July (right), 2017. 
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computationally less demanding and produces almost the same result as using the full input 

spectrum of a raw probabilistic model, i.e. all LAEF members as predictors. Previous results have 

already shown that the wind speed increases towards north-eastern part (Pannonian plate) for 

both January and July. The values in January are slightly higher than in July (i.e. Figure 3).  

For the LA_Ws forecast, the bias is slightly positive on average at majority of the stations, 

especially in January (Figure 24). The AN_Me mean bias is smaller in absolute values than for 

the LA_Ws forecast, showing an underestimation at the majority of stations for both months. 

The results for other AN forecasts also exhibited very similar findings. The results (CC, mean 

monthly bias and RMSE) for AN_St and AN_Al are almost undistinguishable from AN_Me resulst, 

while the AN_Ws and AN_11 are the same or slightly worse. Since they carry no new 

information, they are not shown from this moment on.  

 

 

  

Figure 26. The spatial distribution of the monthly correlation coefficient for the LAEF LA_Ws 
forecast (left) and AN_Me forecast (right), during January (left) or July (right), 2017. 
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The RMSE value is slightly higher during January than in July for all the forecasts (Figure 25). The 

value for the monthly mean RMSE is reduced for the AN forecasts in both January and July 

cases, if compared with LA_Ws forecasts. There is no obvious spatial distribution of error for the 

AN forecasts. However, there are large differences for nearby stations situated in a highly 

complex terrain. Better looking the results for these locations, taking longer period in account 

might lead to some interesting results.  

The CC seems to reduce its value from northeast area towards west and south-west of Austria 

(Figure 26). Also, the values are higher for the January than the July. This is regardless of the 

exact forecast and time of a year. Therefore, it could probably be concluded that the wind 

speed is less predictable towards west and during winters, similar to previous tests. All forecasts 

lower values in the Alps, as expected. The CC values as low as shown can suggest very 

unpredictable month, but also a potential error made in forecasting, loading the data or 

analysis. However, there is an evident improvement achieved with post-processing for January 

and especially July for all analog-based variations.  
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Summary- 

 

During this stay results for modified analog-based post-processing method (mAN) are compared 

against previously developed analog-based post-processing method (AN) and against AROME 

deterministic model forecasts (AR). The mAN, unlike AN, allows the most similar historical 

forecast to be found one lead time step sooner or later (time window for analog search is now 

allowed to shift maintaining the same width). The mAN shows some potential when there is a 

need to expand the length of the training data (i.e. short training, rare event). The improvement 

of mAN over AN forecast in this experiment is implicative, but not statistically significant. This is 

probably because the two-year training is long enough to find the majority of the best historical 

matches. The differences could be more pronounced if the experiment is extended to include: 

 results achieved with shorter training. The other possibility is to use the same or even longer 

training, but analyze longer than two months mAN time series, focusing only on rare event.  

 

Several different configurations of LAEF ensemble forecast are tested as input to analog-based 

post-processing during the second part of the stay. It is shown that using only one predictor 

variable as input (wind speed LAEF ensemble) already improves the forecast skills and lowers 

the systematic error of the ensemble mean. Even better results are achieved when using more 

than one predictor variable. In addition, it is shown that there is no need to use the full input 

spectrum of a raw probabilistic model, i.e. all LAEF members as predictors. Using basic 

information of an input ensemble, such as ensemble mean and standard deviation, improves 

the forecast skills the most among analog-based experiments. Furthermore, it is 

computationally less demanding while produces very similar result as using the full input 

spectrum of a raw probabilistic model as predictors. 
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