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1 Generalities

• Here is discussed the gamma distribution used as the probability density function of number concentration of a
hydrometeor per its diameter. It is a function of three parameters: the number concentration of a hydrometeor
N , shape parameter µ, and slope parameter λ. A single-moment microphysics scheme has prognostical only λ. A
double-moment scheme also has prognostical N , but µ still must be prescribed (or diagnosed).

• ICE3 and LIMA use the generalized gamma distribution with one more parameter, which is not discussed in this
document, but one can redo the computations with it.

• The gamma distribution is defined as:

n(D) = Nρt
λµ+1

Γ(µ+ 1)
Dµe−λD [m−4], (1)

where N [kg−1] is the total number of particles of a given hydrometeor, ρt [kg·m−3] is the density of air with
water species, D [m] diameter of the hydrometeor, µ is a dimensionless shape parameter, and λ [m−1] is the slope
parameter. There is ρt since N is in kg−1. The shape parameter µ ∈ R, µ ≥ 0 to keep things simple as µ < 0 is
not widely used.

• Suppose r ∈ R such that r ≥ 0. Then the r-th moment of the gamma distribution is:

Mr =

∞∫
0

Drn(D)dD = Nρt
λµ+1

Γ(µ+ 1)

∞∫
0

Dµ+re−λDdD

= Nρt
λµ+1

Γ(µ+ 1)

Γ(µ+ 1 + r)

λµ+1+r

= Nρt
Γ(µ+ 1 + r)

Γ(µ+ 1)
λ−r.

(2)

• The value of λ is obtained from the mass fraction q [kg·kg−1]:

q =
1

ρt

∫ ∞
0

m(D)n(D)dD =
1

ρt

∫ ∞
0

ρπD3

6
Nρt

λµ+1

Γ(µ+ 1)
Dµe−λD =

ρπNΓ(µ+ 4)

6Γ(µ+ 1)

1

λ3
(3)

λ =

[
ρπNΓ(µ+ 4)

6qΓ(µ+ 1)

] 1
3

, (4)

where m [kg] is the mass of the hydrometeor and ρ [kg·m−3] its density.

2 Diameters and their ratios

2.1 Definitions

• The mean volume diameter is the diameter for a monodisperse size distribution. In other words, if all drops are
of the same size at given q and N , then the mean volume diameter is their diameter. Mathematically speaking:

DV =

(
6q

πρN

) 1
3

. (5)

• The effective diameter is weighted by D2, with proportional to the surface of the hydrometeor:

Deff =

∞∫
0

D3n(D)dD

∞∫
0

D2n(D)dD

=
Γ(µ+ 4)

Γ(µ+ 3)

1

λ
=

Γ(µ+ 4)

Γ(µ+ 3)

[
6qΓ(µ+ 1)

ρπNΓ(µ+ 4)

] 1
3

=
Γ(µ+ 4)

Γ(µ+ 3)

[
Γ(µ+ 1)

Γ(µ+ 4)

] 1
3

DV . (6)
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• The mass-weighted mean diameter is weighted with the mass, which is proportional to the third power of diameter
for a spherical particle, so it is defined for a spherical particle as:

Dm =

∞∫
0

Dm(D)n(D)dD

∞∫
0

m(D)n(D)dD

=

∞∫
0

Dµ+4e−λDdD

∞∫
0

Dµ+3e−λDdD

=
Γ(µ+ 5)

Γ(µ+ 4)

[
6qΓ(µ+ 1)

ρπNΓ(µ+ 4)

] 1
3

=
Γ(µ+ 5)

Γ(µ+ 4)

[
Γ(µ+ 1)

Γ(µ+ 4)

] 1
3

DV . (7)

• There are other diameters (e.g. number-concentration-weighted mean diameter or median diameter), but they
are probably not so useful at the moment.

2.2 Ratios

• The ratio of Deff to DV is:

Deff

DV
=

Γ(µ+ 4)

Γ(µ+ 3)

[
Γ(µ+ 1)

Γ(µ+ 4)

] 1
3

=
µ+ 3

[(µ+ 3)(2 + µ)(µ+ 1)]
1
3

> 1. (8)

The relationship Γ(x+ 1) = xΓ(x), x > 0 was used for simplification1. The ratio is show in Figure 1.

• The ratio of Dm to DV is (also see Figure 1):

Dm

DV
=

Γ(µ+ 5)

Γ(µ+ 4)

[
Γ(µ+ 1)

Γ(µ+ 4)

] 1
3

=
µ+ 4

[(µ+ 3)(2 + µ)(µ+ 1)]
1
3

> 1. (9)

• Finally, the ratio of Dm to Deff is (again see Figure 1):

Dm

Deff
=
Dm

DV

DV

Deff
=

Γ(µ+ 5)

Γ(µ+ 4)

Γ(µ+ 3)

Γ(µ+ 4)
=

(µ+ 4)(µ+ 3) [Γ(µ+ 3)]
2

[(µ+ 3)Γ(µ+ 3)]
2 =

µ+ 4

µ+ 3
> 1. (10)

• DV < Deff < Dm, ∀µ ∈ R : µ ≥ 0.
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Figure 1: Ratio of the Dm to DV dependency on the shape parameter.

1Thank you to Ján Mašek for suggesting using this relationship.
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