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Diffusive chimney in NH dynami(:s-I

Work of: M. Vordos (Hu), R. Brozkova (Cz) and F. Vana (Cz)
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Fig. T: NH =12tl, dy + new BBC, no diffusion.
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Fig. 8: NH =l2tl, dy + new BBC, diffusion.
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Diffusive chimney in NH dynami(:s.-I

BBC for the term 22
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Diffusive chimney in NH dynami(:s.-I

BBC for the term 22

RT
(@5) ) V-V + W] - Ves+ s — g g
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Here V and W are the source terms of momentum
containing coriolis, diabatic tendencies and horizontal
diffusion.

wis 7 AL ACE

nwp central europe 28th EWGLAM + 13th SRNWP Meetings, 9th - 12th of October, Zurich — p.2



Diffusive chimney in NH dynamics-I

Possible alternatives:
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Diffusive chimney in NH dynamics-I

Possible alternatives:

e Switch off HD
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Diffusive chimney in NH dynami(:s.-I

Possible alternatives:

e Switch off HD
e Introduce extra spectral computation
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Diffusive chimney in NH dynami(:s.-I

Possible alternatives:

e Switch off HD
e Introduce extra spectral computation
e Use HD computed in GP space
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Diffusive chimney in NH dynami(:s.-I

Possible alternatives:

e Switch off HD
e Introduce extra spectral computation
e Use HD computed in GP space

Semi-Lagrangian Horizontal Diffusion = way to control
damping properties of the SL interpolation according to

the flow deformation.
= SLHD solution for ALADIN NH dynamics?

wis 7 AL ACE
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Diffusive chimney in NH dynamics.-I

ALADIN 2TL SISL:

At N7 At At At
Xt = (1 - 75) (1 + 75) X, +AtF, + 7/\/25 +7N;

\ . J/

- SLHD i

Extra spectral diffusion (= supporting diffusion) is needed
for u, v and d (having ¢g in their N).
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Diffusive chimney in NH dynamics-I

Reference experiment #1
NH vertical velocity [m/s], NSTEP = +0500

A recreation of a 2D experinment of Jan Masek
Nonhydrostatic, nonlinear, Bell shaped nountain
Using diffusion - expecting a chi mey

0w T e Spectral diffusion

28 28
24 24
20 - X 20
< |
& v \@
— N ; N —
§ 16 AT L4 \\j, 16 §
< A =
2 x ) ©
© s o N T
12 —b 12
k g 7
8 _) 8
4 a4
g
0 Q 0
80 100 120

grid point

mn: -14.206
max: 11.997

GMT 2005 Sep 20 18:51:36| experiment: ROOL st ep: 1.0

wis 7 AL ACE

nwp central europe V 28th EWGLAM + 13th SRNWP Meetings, 9th - 12th of October, Zurich — p.5



Diffusive chimney in NH dynamics

Reference experiment cy29 SLHD #1
NH vertical velocity [m/s], NSTEP = +0500

A recreation of a 2D experinment of Jan Masek
Nonhydrostatic, nonlinear, Bell shaped nountain

Using SLHD, normal diffusion strength, Di agBBC
LNHDYN=. T. LTWOTL=. T. NSI TER=3
LPC FULL=.T. LPC_NESC=. T. LPC OLD=. F.
LADVF=. F. LGWADV=. F. LRDBBC=. T.
RRDXTAU=551. 1352 RDAMPDI VS=1. RDAMPVORS=5.
S| PR=90000. S| TR=300. S| TRA=50.
NVDVAR=3 NPDVAR=2 ND4SYS=1
REPONBT=20000. REPONTAU=100. REPONTP=29500.
NSPONGE=2 LSLHD W&, T. LSLHD _SVD=. T.
SLHDA0=0. 25 SLHDB=4. SLHDDO0=6. 5E- 5 ZSLHDP1=1.7
ZSLHDP3=0. 6 ALPHI NT=0. 15 GAMVAX0=0. 15 SLHDKMAX n/ a
RDAMPVORS=5. RDAMPDI VS=1. RDAMPVDS n/ a REXPDHS=6.
SLEVDHS=1. SLEVDHS2 n/ a ﬁmﬁt
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a Spectral diffusion

e Default SLHD
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Diffusive chimney in NH dynamics

Reference experiment cy29 SLHD #2
NH vertical velocity [m/s], NSTEP = +0500

A recreation of a 2D experinment of Jan Masek
nonlinear, Bell shaped nountain

Nonhydrostati c,

Using SLHD, no residual diffusion, diagBBC
LNHDYN=. T. LTWOTL=. T. NSI TER=3
LPC FULL=.T. LPC_NESC=. T. LPC OLD=. F.
LADVF=. F. LGWADV=. F. LRDBBC=. T.
RRDXTAU=0. RDAMPDI VS=1. RDAMPVORS=5.
S| PR=90000. S| TR=300. S| TRA=50.
NVDVAR=3 NPDVAR=2 ND4SYS=1
REPONBT=20000. REPONTAU=100. REPONTP=29500.
NSPONGE=2 LSLHD W&, T. LSLHD _SVD=. T.
SLHDA0=0. 25 SLHDB=4. SLHDDO0=6. 5E- 5 ZSLHDP1=1.7
ZSLHDP3=0. 6 ALPHI NT=0. 15 GAMVAX0=0. 15 SLHDKMAX n/ a
RDAMPVORS=5. RDAMPDI VS=1. RDAMPVDS n/ a REXPDHS=6.
SLEVDHS=1. SLEVDHS2 n/ a ﬁmﬁt
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Diffusive chimney in NH dynamics

Reference experiment cy29 SLHD - Tuned RDAMPVDS
NH vertical velocity [m/s], NSTEP = +0500

Nonhydrostati c,

nonlinear, Bell shaped nountain

Using SLHD, nornmal diffusion strength, Di agBBC

LNHDYN=. T. LTWOTL=. T. NSI TER=3
LPC FULL=. T. LPC_NESC=. T. LPC_OLD=. F.
LADVF=. F. LGMDV=, F. LRDBBC=. T.
RRDXTAU=551. 1352 RDAMPDI VS=1. RDAMPVORS=5
S| PR=90000. SI TR=300. S| TRA=50
NVDVAR=3 NPDVAR=2 ND4SYS=1
REPONBT=20000.  REPONTAU=100. REPONTP=29500
NSPONGE=2 LSLHD W. T. LSLHD_SVD=. T.
SLHDA0=0. 25 SLHDB=4. SLHDD00=6. 5E-5  ZSLHDP1=1.7
ZSLHDP3=0. 6 ALPHI NT=0. 15 GAMVAX0=0. 15 SLHDKMAX n/ a
RDAMPVORS=5. RDAMPDI VS=1. RDAMPVDS=15. REXPDHS=6
SLEVDHS=1. SLEVDHS2 n/ a SDRED=1
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Diffusive chimney in NH dynami(:s-I

AROME instantaneous rainfalls 19-Oct-2005 00 UTC
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Non-isothermal SI background L

Work of: J. Vivoda (Sk)

T, Ty = T*(n), Ty (n)
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nwp central europe ¥ 28th EWGLAM + 13th SRNWP Meetings, 9th - 12th of October, Zurich — p.7



Non-isothermal SI background L

Work of: J. Vivoda (Sk)
T, 15 = T*(n), T4 (n)

System becomes more complicated:
e Non trivial setup for 7 (n), T (n)

e No analyze for optimal T*(n), T (n) setting (at the
moment)

e Helmholtz solver becomes the two equations system

wis 7 AL ACE
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Non-isothermal Sl backgroun L

2D explicit convection test

Explicit Convection Experiment
perturbation of potential temperature [K], NSTEP = +0000

NVDVAR=4

XI DT =0.0

Sl PR=101325.
LSETTLS=. F.
LPC_NOTR=. F.
LSLAG=. T.

height [km]

no
no
no
no
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NPDVAR=2
VESL=0. 0
TSTEP=1
LPC_XI DT=. F.
LPC_NESC=. T.
RCVBLPO=1. 0

| ateral coupling
Asseline filter

di f fusion

LGMADV=. T. ND4SYS = 1
S| TRA=100. S| TR=350.
NDLNPR=1 NSI TER=1
LPC_ OD =.F. LPC FULL=.T.
LNHDYN=. T. LTWOTL=. T.

LSI _NONI SOTHERMAL=. F.

0
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Initial state
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Non-isothermal Sl backgroun

2D explicit convection test

Explicit Convection Experiment Explicit Convection Experiment

perturbation of potential temperature [K], NSTEP = +4000 perturbation of potential temperature [K], NSTEP = +4000
NVDVAR=4 NPDVAR=2 LGWADV=. T. ND4SYS = 1 NVDVAR=4 NPDVAR=2 LGWADV=. T. ND4SYS = 1
XI DT =0.0 VESL=0. 0 SI TRA=100. SI TR=350. XI DT =0.0 VESL=0. 0 S| TRA=100. SI TR=350.
SI PR=101325.  TSTEP=0. 5 NDLNPR=1 NSI TER=1 SI PR=101325.  TSTEP=0. 5 NDLNPR=1 NSI TER=1
LSETTLS=.F.  LPC XIDT=F. LPC OLD =.F. LPC FULL=.T. LSETTLS=.F.  LPC XIDT=F. LPC OLD =.F. LPC FULL=.T.
LPC_NOTR=.F. LPC_NESC=.T. LNHDYN=. T. LTWOTL=. T. LPC_NOTR=.F. LPC_NESC=.T. LNHDYN=. T. LTWOTL=. T.
LSLAG=. T. RCVBLPO=1. 0 LS| _NONI SOTHERMAL=. F. LSLAG=. T. RCVBLPO=1. 0

no sponge LS| _NONI SOTHERVAL=. F.
no lateral coupling

no sponge
no Asseline filter no lateral coupling
no diffusion no Asseline filter
no diffusion
12 12
11 11
10 10
9 9
8 8

height [km]

height [km]

5 4
4 4
3 34
2 2
1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12
grld p0|nt mn: -0.113654 grld p0|nt mn: o -0.124471
max: 1. 2115 max: 1. 23164
step: 0.1 step: 0.1
experiment: ECa1 [EIVEH 2005 Aug 25 073501 experiment: £33

At =0.5s (Az =Az=100m)
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Non-isothermal SI background

2D explicit convection test

Explicit Convection Experiment Explicit Convection Experiment
perturbation of potential temperature [K], NSTEP = +0100 perturbation of potential temperature [K], NSTEP = +0100
NVDVAR=4 NPDVAR=2 LGWADV=. T. ND4SYS = 1 NVDVAR=4 NPDVAR=2 LGWADV=. T. ND4SYS = 1
XI DT =0.0 VESL=0. 0 S| TRA=100. Sl TR=350. XI DT =0.0 VESL=0. 0 S| TRA=100. SI TR=350.
S| PR=101325.  TSTEP=20 NDLNPR=1 NSI TER=1 S| PR=101325.  TSTEP=20 NDLNPR=1 NSI TER=1
LSETTLS=.F.  LPC_XIDT=F. LPC OLD =.F. LPC FULL=.T. LSETTLS=.F.  LPC_XIDT=F. LPC OLD =.F. LPC FULL=.T.
LPC NOTR=.F. LPC_NESC=.T. LNHDYN=. T. LTWOTL=. T. LPC_ NOTR=.F. LPC_NESC=.T. LNHDYN=. T. LTWOTL=. T.
LSLAG=. T. RCVBLPO=1. 0 LS| _NONI SOTHERVAL=. F. LSLAG=. T. RCVBLPO=1. 0
no sponge LSI _NONI SOTHERMAL=. F.
no lateral coupling no sponge
no Asseline filter no lateral coupling
no diffusion no Asseline filter
no diffusion

12 T

[v 11 W/ Has

T

height [km]
height [km]

0 2 4 6 8 10 12 0 2 4 6 8 10 12
grld p0|nt mn:  -0.449113 grld p0|nt nin: -0.53058
nax: 1.58353 max: 1.47293
step: 0.1 step: 0.1
experiment: EC21 [V 2605 Aug 25 673255] experiment: EC23

At =20.s (Az = Az =100 m)
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Vertical Finite Element scheme L
Work of: J. Vivoda (Sk)

@ VFE scheme successfully implemented into the HY model (Untch
and Hortal)
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Vertical Finite Element scheme L
Work of: J. Vivoda (Sk)

@ VFE scheme successfully implemented into the HY model (Untch
and Hortal)

@ Is it extensible to the NH dynamics? (Bénard - compatibility and
Vivoda - stability)
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Vertical Finite Element scheme L
Work of: J. Vivoda (Sk)

@ VFE scheme successfully implemented into the HY model (Untch
and Hortal)

@ Is it extensible to the NH dynamics? (Bénard - compatibility and
Vivoda - stability)

@ The only non-local operations in the vertical are integrations in HY
dynamics (SL version). In NH dynamics also derivatives plays
Important role (structure equation contains vertical laplacian).
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Vertical Finite Element scheme L
Work of: J. Vivoda (Sk)

@ VFE scheme successfully implemented into the HY model (Untch
and Hortal)

@ Is it extensible to the NH dynamics? (Bénard - compatibility and
Vivoda - stability)

@ The only non-local operations in the vertical are integrations in HY
dynamics (SL version). In NH dynamics also derivatives plays
Important role (structure equation contains vertical laplacian).

@ First version of VFE implemented to the code — stable, efficient
(2-3 % extra CPU) but (for the moment) noisy.
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Vertical Finite Element scheme L
Work of: J. Vivoda (Sk)

@ VFE scheme successfully implemented into the HY model (Untch
and Hortal)

@ Is it extensible to the NH dynamics? (Bénard - compatibility and
Vivoda - stability)

@ The only non-local operations in the vertical are integrations in HY
dynamics (SL version). In NH dynamics also derivatives plays
Important role (structure equation contains vertical laplacian).

@ First version of VFE implemented to the code — stable, efficient
(2-3 % extra CPU) but (for the moment) noisy.

@ Plan to code a hybrid FE/FD system with interchangeable parts.

wis 7 AL ACE
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Vertical Finite Element scheme

NLNHO2 test

NLNHO2 test
perturbation of V-wind [m/s], NSTEP = +0500 perturbation of V-wind [m/s], NSTEP = +0500
TSTEP test: 5 2TL 1Cl NESC schene NSI TER=1 TSTEP test: 5 2TL 1Cl NESC scheme NSI TER=1
LVERTFE =FALSE LVERTFE =TRUE
LVFE_LAPL_FD =FALSE LVFE_LAPL_FD =FALSE
LVFE_UVH_FD =FALSE
LVFE_GWFD  =FALSE

LVFE_UVH FD =FALSE
LVFE_GWFD  =FALSE
NVSCH =3 NVSCH =3
NVDER =3 NVDER =3
gridpoint gridpoint
10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120
10 o 7 10000 10000 10000
N N \
5 N N
E E E ; E
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i=y Ry i f=y
Q [} [} [}
< ~ = <
\ A
0 : B ° 0 0 ! 0
10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120
gridpoint gridpoint
min: -6.1452 min: -5.2998
= max: 8.6435 = max: 7.7414
GV 2006 Jul 411:30:31 | experiment: VFE9 step: 1 fe{\Vp) 2006 Jun 22 08:23:15| experiment: VFE8 step: 1

FD scheme versus full VFE
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Vertical Finite Element scheme

NLNHO2 test NLNHO2 test
perturbation of V-wind [m/s], NSTEP = +0500 perturbation of V-wind [m/s], NSTEP = +0500
TSTEP test: 5 2TL |Cl NESC scheme NSI TER=1 TSTEP test: 5 2TL 10l NESC schene NSI TER=1
LVERTFE =FALSE LVERTFE =TRUE
LVFE_LAPL_FD =FALSE LVFE_LAPL_FD =TRUE
LVFE_WH_FD =FALSE LVFE_LAPL_BC FD =TRUE
LVFE_GWFD  =FALSE LVFE_UVH_FD =TRUE
NVSCH =3 LVFE_GWFD  =TRUE
NVDER =3 NVSCH =3
NVDER =3
gridpoint gridpoint
10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120
10 o N A T T 10000 10000 < N 0 10000

E E E £
= ' = - B =
£ 5000 5000 £ £ 5000 5000 £
2 2 2 i
] ] ] ]
< ~ = <
| O I
s,
- |
) : B ° 0 0 - L 2 )
10 20 30 40 50 60 70 80 90 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120
gridpoint gridpoint
min: -6.1452 min: -5.9847
5 - max: 8.6435 SV - max: 8.7755
u experiment: VFES step: 1 u experiment: VF11 step: 1

FD scheme versus FD with VFE integral operators
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Vertical Finite El

ement scheme

NLNHO2 test NLNHO2 test
perturbation of V-wind [m/s], NSTEP = +0500 perturbation of V-wind [m/s], NSTEP = +0500
TSTEP test: 5 2TL 1 Cl NESC scheme NSI TER=1 TSTEP test: 5 2TL 1Cl NESC scheme NSI TER=1
LVERTFE =FALSE LVERTFE =TRUE
LVFE_LAPL_FD =FALSE LVFE_LAPL_FD =FALSE
LVFE_UVH FD =FALSE LVFE_LAPL_BC FD =TRUE
LVFE_GWFD  =FALSE LVFE_UWH FD =TRUE
NVSCH =3 LVFE_ GNFD  =TRUE
NVDER =3 NVSCH =3
NVDER =3
gridpoint gridpoint
10 20 30 40 50 60 70 80 100 110 120 10 20 30 40 50 60 70 80 90 100 110 120
10 o ] A N T 10000 10000 T - T 10000
s ] .
- K - - -
£ 5000 5000 £ £ 5000 5000 £
=y K=y 2 2
Q [} [} [}
< ~ = <
3
3 RO B b
) : B ° 0 0 By )
10 20 30 40 50 60 70 80 120 10 20 30 40 50 60 70 80 90 100 110 120
gridpoint gridpoint
min: -6.1452 min: -5.8633
max: 8.6435 max: 8.4249
experiment; VFES step 1 PETV5] 2006 Jul 4 113038 | experiment: VF12

step: 1

FD scheme vs. FD with VFE integ. and laplacian oper.
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New Interpolatorsfor SL L
Work of. J. Masek (Sk) and F. Vana (Cz)

Motivation: SLHD affects conservative properties of the
model = need to an improvement of the SL interpolators

accuracy. MSL PRESSURE

18
15
12

g & 12 1B 24 30 35 42 48
MSL pressure RMSE and BIAS for 15 days of parallel run

v S LACE
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New Interpolatorsfor SL L
Work of. J. Masek (Sk) and F. Vana (Cz)

Motivation: Performance of the local splines is not
superior to the Lagrangian cubic interpolation in SL.
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20
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Differenca Dadu - ALAD
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temperature RMSE and BIAS for 15 days of parallel run
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New Interpolatorsfor SL L

init_102_wch2_eta,

WARM + COLD BUBBLE TEST

perturbation of potential temperature [K], NSTEP = +0120

et a- coordinate

mast er _al 29t 2nxl _02_sx6, (Al, A2) = (-1/3, 1/2), .NOT.LQM

NH sl 2t1, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC FULL, LPC_NESC, LGWADV
NOT. LQM x], . NOT. LQWH[ x], LRSPLINE [x], N x]LAG = 3
TSTEP = 5.0 s
DELY = 10 m DELZ = 10 m
P00 = 101325 Pa THETAO0 = 300 K
SI PR = 90000 Pa SI TR =350 K SITRA = 100 K
RRDXTAU = 0
grid point
10 20 30 40 50 60 70 80 90 100
1.0
0.9
0.8
0.7
0.6
£
=
=05
2
Q
<
0.4
0.3
0.2
0.1
0.0
10 20 30 40 50 60 70 80 90 100
grid point
mn:
max
GMT [ 2006 Aug 4 15:46:50] experiment: C000 step:

wis 7 AL ACE

nwp central europe

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-3.

height [km]

7963
2.34
0.12

Bubble test, after 10 minutes

e Lagrangian cubic

V 28th EWGLAM + 13th SRNWP Meetings, 9th - 12th of October, Zurich — p.12



New Interpolatorsfor SL L

WARM + COLD BUBBLE TEST
perturbation of potential temperature [K], NSTEP = +0120

init_102_wch2_eta,

mast er _al 29t 2nx| _02_sx6, (Al, A2) = (-7/15, 4/5), .NOT.LQM

et a- coordinate

NH sl 2t!, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC FULL, LPC NESC, LGWADV
NOT. LQM x], . NOT. LQWH[ x], LRSPLINE_[x], N x]LAG = 3
TSTEP = 5.0 s
DELY = 10 m DELZ = 10 m
POO = 101325 Pa THETAO0 = 300 K
SI PR = 90000 Pa SITR =350 K SITRA = 100 K
RRDXTAU = 0
grid point
10 20 30 40 50 60 70 80 90 100
1.0 1.0
0.9 0.9
0.8 0.8
0.7 0.7
)
0.6 0.6
o
§. o = ¢ j
£ 05 # 05
2
Q
= 0.4 7 ) 0.4
\ / g Y
=4 A
0.3 0.3
0.2 0.2
0.1 0.1
0.0 0.0
10 20 30 40 50 60 70 80 90 100
grid point
mn: -9
max: 1
GMT [ 2006 Aug 5 15:31:48] experiment: C004 step:

wis 7 AL ACE

nwp central europe

height [km]

616
2.39
0.12

Bubble test, after 10 minutes

e Lagrangian cubic
e Splines
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New Interpolatorsfor SL L

WARM + COLD BUBBLE TEST

perturbation of potential temperature [K], NSTEP = +0600

init_102_wbh2_eta, eta-coordinate
mast er _al 29t 2nx| _02_sx6

NH eul er, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC OLD
TSTEP = 1.0 s
DELY = 10 m DELZ = 10 m
POO = 101325 Pa THETAO0 = 300 K
SI PR = 90000 Pa SITR =250 K SITRA = 250 K
RRDXTAU = 0
grid point
10 20 30 40 50 60 70 80 90 100
1.0 1.0
0.9 0.9
0.8 0.8
0.7 DQ q 0.7
d
@.2.
__ 06 - o 0.6
E | 4
= 0 1le
e 05 v 0 0.5
=) QYC.
(7] o N
<
0.4 7 0.4
° - o
a P4 .
0.3 -~ 0.3
02 e . 0.2
0 o
0.1 0.1
0.0 0.0
10 20 30 40 50 60 70 80 90 100
grid point
mn: -62.
max: 16.
GMT [ 2006 Aug 4 20:05:50] experiment: C900 step:

wis 7 AL ACE

nwp central europe

height [km]

434
339
0.12

Bubble test, after 10 minutes

e Lagrangian cubic
e Splines
e Eulerian adv.
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New Interpolatorsfor SL L

WARM + COLD BUBBLE TEST

102 e Rt of Pojente empereture [, NSTEP = +0120 Bubble test, after 10 minutes

mast er _al 29t 2nx| _02_sx6, (Al, A2) = (0, 0), .NOT.LQM
NH sl 2tl, (NPDVAR, NVDVAR) = (2, 3), NSITER = 1, LPC FULL, LPC NESC, LGAADV
.NOT. LOM x], . NOT. LQWVH x], LRSPLINE_[x], N[ x]LAG = 3

TSTEP = 5.0 s
DELY = 10 m DELZ = 10 m
POO = 101325 Pa THETA00 = 300 K
SIPR = 90000 Pa SITR =350 K SITRA = 100 K
RRDXTAU = 0
grid point
10 20 30 40 50 60 70 80 90 100
1.0 1.0
0.9 0.9 L . b .
0.8 0.8 g g
-
e Splines
0.6 0.6
1S 1S
=, =, .
205 05 =
£ 5 e Eulerian adv.
Q (3]
< <
0.4 0.4
.
e Linear
0.2 0.2
0.1 0.1
0.0 0.0
10 20 30 40 50 60 70 80 90 100
grid point

mn: -10.645

max: 1.8519
GMT [ 2006 Aug 4 18:46:16 ] experiment: C010 step: 0.12

wis 7 AL ACE
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New Interpolatorsfor SL L

Family of two parametric cubic interpolators

F(x,y) = wo(x)yo+ wWi(x)y1
+w1(l —x)y2 + wo(l —x)y3

where
wo(x) = aix+ asx? — (a1 + az)x?’
wi(x) = 1+ (az —1)x— (3a; +4az)x? + 3(a; + az)x>

v S LACE
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New Interpolatorsfor SL L

Dimensionless damping rate

Damping factor for N = 100, m = 10 Damping factor for N = 100, m = 40

20 L L
\ [
\ AN
\
\
\
\
\
\
1.5 o
\ °,
© \ o
% % o %
\
\
\
spl_c1]
1.0 1 P -
spl_n
< N
N\
la
0.5 1 9 -
\
\
\
\
\
\
\ -
lin
0.0 =
\
\
\
\
\
\
\
05 ‘ ; ; \ ~
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
a

wis 7 AL ACE
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TL/AD of the ALADIN SL

Work of: F. Vana (Cz)

wis 7 AL ACE
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TL/AD of the ALADIN SL
Work of: F. Vana (Cz)
Convergence for the TL code:

M(x + edx) — M(x)

lim € = € 107

e—0

Eulerian advection At=120s

M (edx) ’

SL advection At=450s

A=0 RAT = 0.4922389696335498E+00 RAT = -.7944390364435365E+01
A=-1 RAT = 0.9500193013364470E+00 RAT = -.4770497575992165E+00
A=-2 RAT = 0.9950083001890732E+00 RAT = 0.6874108246125125E+00
A=-3 RAT = 0.9995037024689268E+00 RAT = 0.9601433242017338E+00
A=-4 RAT = 0.9999513959612562E+00 RAT = 0.9943026809878674E+00
A=-5 RAT = 0.1000315146923774E+01 RAT = 0.9999531009073782E+00
A =-6 RAT = 0.1001714189087304E+01 RAT = 0.1001665349367836E+01
A=-7 RAT = 0.1007310357741422E+01 RAT = 0.1027349076274704E+01
A=-8 RAT = 0.1119233730823803E+01 RAT = 0.8561242302289194E+00
A=-9 RAT = 0.5596168654119013E+01 RAT = 0.4280621151144597E+01
A=-10 RAT = 0.0000000000000000E+00 RAT = 0.0000000000000000E+00

wis 7 AL ACE

nwp central europe
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TL/AD of the ALADIN SL

Work of: F. Vana (Cz)
Convergence for the TL code:

M(x + edx) — M(x)

lim € = € 107

e—0

Eulerian advection At=120s

M (edx) ’

SL advection At=450s

A=0 RAT = 0.9685219082957116E+00 RAT = 0.1094034387101322E+01
A=-1 RAT = 0.9970618603595810E+00 RAT = 0.1008012195504008E+01
A=-2 RAT = 0.9997073040468342E+00 RAT = 0.1002141025110223E+01
A=-3 RAT = 0.9999707398884352E+00 RAT = 0.1000160788422592E+01
A=-4 RAT = 0.9999970679271253E+00 RAT = 0.1000099605664519E+01
A=-5 RAT = 0.9999995490240665E+00 RAT = 0.1000001139215519E+01
A=-6 RAT = 0.9999987045356886E+00 RAT = 0.1000001847670018E+01
A=-7 RAT = 0.9999936488857756E+00 RAT = 0.1000041939684409E+01
A=-8 RAT = 0.9999533728917936E+00 RAT = 0.1000246087384355E+01
A=-9 RAT = 0.9991377690586460E+00 RAT = 0.9994838411148169E+00
A=-10 RAT = 0.9970808134568164E+00 RAT = 0.1032182685987080E+01

wis 7 AL ACE

nwp central europe
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Physics-dynamics coupling L
Work of: R. Hamdi (Be) and P. Termonia (Be)
o The way in which the physics is coupled to the

dynamics has an influence on the stability and the
accuracy

ALAD'I‘& ;F_/éf'—?
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Physics-dynamics coupling L
Work of: R. Hamdi (Be) and P. Termonia (Be)

o The way in which the physics is coupled to the
dynamics has an influence on the stability and the
accuracy

e Simple 1d model simulations using the framework
proposed by Staniforth, Wood, Co6té (2002) extended
In a way to take into account the spectral nature of
the models and the difference between the real
atmosphere and the background of the linearisation.

ALAD'I‘& ;F_/éf'—?
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Physics-dynamics coupling L
Work of: R. Hamdi (Be) and P. Termonia (Be)

o The way in which the physics is coupled to the
dynamics has an influence on the stability and the
accuracy

e Simple 1d model simulations using the framework
proposed by Staniforth, Wood, Co6té (2002) extended
In a way to take into account the spectral nature of
the models and the difference between the real
atmosphere and the background of the linearisation.

e This study was restricted to explicit, semi implicit and
Implicit physics parameterizations (over-implicitness
not treated).

ALAD&%W ﬁ
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Physics-dynamics coupling L
Possibilities to organize a time step

@ coupling of the physics parameterization before or after the explicit
part of the dynamics
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Physics-dynamics coupling
Possibilities to organize a time step

@ coupling of the physics parameterization before or after the explicit
part of the dynamics

@ coupling of the physics to the dynamics at different positions (in
space and time with respect to dyn.) on the SL trajectory

(ADv 127
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Physics-dynamics coupling L
Possibilities to organize a time step

@ coupling of the physics parameterization before or after the explicit
part of the dynamics

@ coupling of the physics to the dynamics at different positions (in
space and time with respect to dyn.) on the SL trajectory

@ computing the physics parameterization in a parallel or a fractional
manner

(ADv 127
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Physics-dynamics coupling L
Possibilities to organize a time step

@ coupling of the physics parameterization before or after the explicit
part of the dynamics

@ coupling of the physics to the dynamics at different positions (in
space and time with respect to dyn.) on the SL trajectory

@ computing the physics parameterization in a parallel or a fractional
manner

@ coupling the physics to the dynamics by updating the model state
and using this for the dynamics, or computing the physics
tendency and the dynamics tendencies separately and adding
them to get the update, in other words to
treat the physics/dynamics in a fractional or a sequential manner

ALAD&%W ﬁ
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Physics-dynamics coupling L

A/A/A vs. SLAVEPP

A/A/A SLAVEPP
phys. before/after dyn. before computed after and averaged
on SL traj. att att + At
parallel / sequential physics calls parallel sequential
parallel /sequential phys.- dyn. coupling sequential parallel

A

tAD 1y _?;%/—?

&S
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Physics-dynamics coupling L

Results

@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

preA
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Physics-dynamics coupling L

Results

@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

@ The structure of A/A/A is more stable but less accurate in case of a single diffuse
process.

tAD 1y _?;%/—?

&S
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Physics-dynamics coupling L

Results

@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

@ The structure of A/A/A is more stable but less accurate in case of a single diffuse
process.

@ In parallel physics coupling one should couple the diffusive processes last. (This
confirms results in Dubal et al. (2004)).

(%)
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Physics-dynamics coupling L

Results
@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

@ The structure of A/A/A is more stable but less accurate in case of a single diffuse
process.

@ In parallel physics coupling one should couple the diffusive processes last. (This
confirms results in Dubal et al. (2004)).

@ AJ/A/A corrupts the steady state solution, so it may create some climatic drift. The
presence of a strong vertical diffusion may correct this. However, SLAVEPP as
studied in the 1d model does not corrupt the steady state

(%)
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Physics-dynamics coupling L

Results
@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

@ The structure of A/A/A is more stable but less accurate in case of a single diffuse
process.

@ In parallel physics coupling one should couple the diffusive processes last. (This
confirms results in Dubal et al. (2004)).

@ AJ/A/A corrupts the steady state solution, so it may create some climatic drift. The
presence of a strong vertical diffusion may correct this. However, SLAVEPP as
studied in the 1d model does not corrupt the steady state

@ In the AJA/A framework, coupling the physics after the dynamics gives a more
accurate treatment of the steady state. This might be beneficial for climate
simulations.

(%)

A DC;‘?;@
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Physics-dynamics coupling L

Results

@ Always couple the physics to the air parcel along the SL trajectory. Otherwise the
properties (stability and accuracy) depend on the advection.

@ The structure of A/A/A is more stable but less accurate in case of a single diffuse
process.

@ In parallel physics coupling one should couple the diffusive processes last. (This
confirms results in Dubal et al. (2004)).

@ AJ/A/A corrupts the steady state solution, so it may create some climatic drift. The
presence of a strong vertical diffusion may correct this. However, SLAVEPP as
studied in the 1d model does not corrupt the steady state

@ In the AJA/A framework, coupling the physics after the dynamics gives a more
accurate treatment of the steady state. This might be beneficial for climate
simulations.

@ If the physics were treated in a semi-implicit way (in the A/A/A context) we would
have the same stability and also second-order accuracy as in the SLAVEPP
approach. This is maybe not practical but nevertheless a nice surprise because it

aS3.——means that (in the 1d model) one could get the same benefits of the time step

ADyy (27 L . L ,
W reorganization, by an internal reorganization of the physics.
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Physics-dynamics coupling L
Outcome for A/A/A
a If both forcing and diffusive processes are present, a
SLAVEPP kind of time step becomes superior to the
A/A/A one IF the diffusive processes are coupled
LAST. This will also lead to a more accurate steady
state and less climate drift.

o
ALAD%'M ?"7
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Physics-dynamics coupling L
Outcome for A/A/A
a If both forcing and diffusive processes are present, a
SLAVEPP kind of time step becomes superior to the
A/A/A one IF the diffusive processes are coupled
LAST. This will also lead to a more accurate steady
state and less climate drift.

a A code reorganization is expected to yield benefits.

o
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Physics-dynamics coupling

Outcome for A/A/A
a If both forcing and diffusive processes are present, a
SLAVEPP kind of time step becomes superior to the
A/A/A one IF the diffusive processes are coupled
LAST. This will also lead to a more accurate steady
state and less climate drift.

a A code reorganization is expected to yield benefits.

a There seems to be no better option with respect of
phys-dyn coupling to increase the existing stability of
the physics in the A/A/A framework.

ALAD'I‘& ;F_/éf'—?
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Physics-dynamics coupling L

Outcome for A/A/A
a If both forcing and diffusive processes are present, a
SLAVEPP kind of time step becomes superior to the
A/A/A one IF the diffusive processes are coupled
LAST. This will also lead to a more accurate steady
state and less climate drift.

a A code reorganization is expected to yield benefits.

a There seems to be no better option with respect of
phys-dyn coupling to increase the existing stability of
the physics in the A/A/A framework.

e Publication with the detailed guidelines is in
preparation (manuscript can be obtained from
piet.termonia@oma.be)

ALAD&%W ﬁ
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Transparent LBCsin spec. models

Work of: F. Voitus (Fr) and P. Termonia (Be)

@ LBCs have to be imposed in gridpoint space.

ALAD'I‘& ;F_/éf'—?
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Transparent LBCsin spec. models

Work of: F. Voitus (Fr) and P. Termonia (Be)

@ LBCs have to be imposed in gridpoint space.

@ By LBCs we mean here: methods to impose incoming
characteristics and extrapolate outgoing characteristics.
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Transparent LBCsin spec. models

Work of: F. Voitus (Fr) and P. Termonia (Be)

@ LBCs have to be imposed in gridpoint space.

@ By LBCs we mean here: methods to impose incoming
characteristics and extrapolate outgoing characteristics.

@ This forces us, in spectral models, to impose that in an explicit kind
of way. It is not possible to impose them in the Helmholtz solver.

e

(ADv 127
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Transparent LBCsin spec. models

Work of: F. Voitus (Fr) and P. Termonia (Be)

@ LBCs have to be imposed in gridpoint space.

@ By LBCs we mean here: methods to impose incoming
characteristics and extrapolate outgoing characteristics.

@ This forces us, in spectral models, to impose that in an explicit kind
of way. It is not possible to impose them in the Helmholtz solver.

@ This is related to a deeper question: “Can one impose LBCs
independently from the details of the dynamics integration
scheme?”

e

(ADv 127
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Transparent LBCsin spec. models

Work of: F. Voitus (Fr) and P. Termonia (Be)

@ LBCs have to be imposed in gridpoint space.

@ By LBCs we mean here: methods to impose incoming
characteristics and extrapolate outgoing characteristics.

@ This forces us, in spectral models, to impose that in an explicit kind
of way. It is not possible to impose them in the Helmholtz solver.

@ This is related to a deeper question: “Can one impose LBCs
independently from the details of the dynamics integration
scheme?”

@ In a spectral model we are forced to address this question, but in a
gridpoint model maintained in a huge collaboration with different
kinds of researchers working together, this will have to be

f‘?f—@ddressed too.

1Al
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Transparent LBCsin spec. models

Different LBC scheme near the boundary
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Transparent LBCsin spec. models

Different LBC scheme near the boundary

o Can we impose LBCs using a different integration
scheme at or near the boundary than the one that is
used inside the domain?

ALAD'I‘& ;F_/éf'—?
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Transparent LBCsin spec. models

Different LBC scheme near the boundary

o Can we impose LBCs using a different integration
scheme at or near the boundary than the one that is
used inside the domain?

e Near the boundary the scheme can only be explicit,
since the whole domain is needed to invert an
(semi-)implicit operator.

ALAD'I‘& ;F_/éf'—?
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Transparent LBCsin spec. models

Different LBC scheme near the boundary

o Can we impose LBCs using a different integration
scheme at or near the boundary than the one that is
used inside the domain?

e Near the boundary the scheme can only be explicit,
since the whole domain is needed to invert an
(semi-)implicit operator.

a Proposal: rely on sub-stepping

ALAD'I‘& ;F_/éf'—?
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Transparent LBCsin spec. models

IS it feasible?

Tests with a leapfrog scheme with following space-time
structure

; t+At
At
A t
At

T N R

N-6 N-5 N-4 N-=3 N-2 N-1 N

oo o o o o b t—At
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Transparent LBCsin spec. models

First test in Shallow water model

@ Inside the domain (crosses):. SISL 2TL
Near the boundary to compute 3 points at ¢ + At (solid dots):
leapfrog Asselin or leapfrog trapezoidal by sub-stepping with
Interval 7

Aﬂ%ﬁ
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Transparent LBCsin spec. models

First test in Shallow water model

@ Inside the domain (crosses):. SISL 2TL
Near the boundary to compute 3 points at ¢ + At (solid dots):
leapfrog Asselin or leapfrog trapezoidal by sub-stepping with
Interval 7

@ This allows to have transparent LBCs at wave Courant
number 5.6 (extra research is going on to get higher Courant
nrs.) = The idea is not entirely crazy.
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Transparent LBCsin spec. models

First test in Shallow water model

@ Inside the domain (crosses):. SISL 2TL
Near the boundary to compute 3 points at ¢ + At (solid dots):
leapfrog Asselin or leapfrog trapezoidal by sub-stepping with
Interval 7

@ This allows to have transparent LBCs at wave Courant
number 5.6 (extra research is going on to get higher Courant
nrs.) = The idea is not entirely crazy.

@ The problem is being replaced to data flow.... We need an
extra large stencil near the boundary (solid dots at ¢).

LADm ;/_7
&/
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