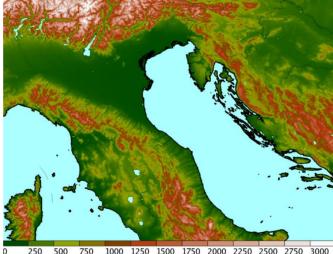
Regional Cooperation for Limited Area Modeling in Central Europe

Data assimilation status and activities in Slovenia - 2024

Benedikt Strajnar with inputs from ARSO NWP team

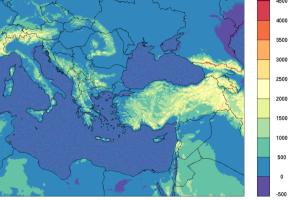
Czech Hydrometeorological Institute

ARSO METEO Slovenia


Operational DA systems at ARSO

750 1000 1250 1500 1750 2000 2250 2500 2750 3000 500 250

ALARO 4.4km 3h 3D-VAR + OI cut-off time +110 mins, 4x72h, 4x36h forecast Downstream apps: CAM-X, Nemo

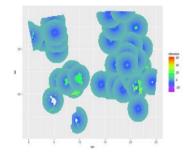


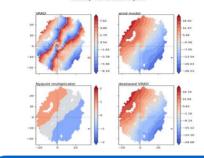
1500 250 500 750 1000 1250 1750 2000 2250 2500 2750 3000

ALARO I.3km, Ih 3D-VAR + OI, **OPERA NIMBUS** radar reflectivity, cut-off time +35 mins, 24x36h

ALARO 2.5 km, 3h 3D-VAR + OI, ~I0h cut-off 2x72h (for SEEMHEWS project)

- Surface stations: SYNOP, OPLACE AWS (T2m, RH2m, U10m, P)
- GNSS data: EGVAP (ZTD), passive assimilation only
- Aircraft data: AMDAR/ACARS, Mode-S EHS/MRAR (T,U)
- Atmospheric motion winds: EUMETSAT, EUMETSAT HR (U)
- Radiosondes: OPLACE obsoul (T,U,q)
- Radiances: MSG SEVIRI, NOAA 19 (AMSUA, MHS), Metop A/B/C (AMSUA, MHS, IASI)
- Scatterometer data: ASCAT (U10m over sea)
- Radar data: OPERA (DBZH), only in RUC

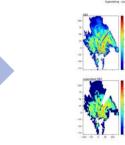



- Modernization of ecFlow suites (Python DA classes), maintainance of operations through git
- Radar reflectivities from NIMBUS production lines
 - Validation by Obsmon indicates same content for radars used in ALARO-RUC.
 - Issue with file sizes & updates (under investigation)
- SEVIRI in netcdf (operational in 2/3 suites)
- Additional Slovenian AWS stations on OPLACE

Status of HOOF for processing OPERA files *LACE*

Homogenization

- add missing meta data (e.g. NI)
- select scans with required quantities and QC flags


Dealiasing

 apply torus mapping method by height sectors (tunable)

GeoSphe

Institute

• update the QC flags

Superobservations

- create flexible superobservations
- add related QC flag
- create and outprint new geometry (hdf5)

nwp central europ

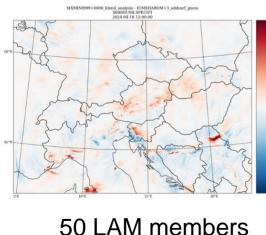
Supported and recommended version v2:

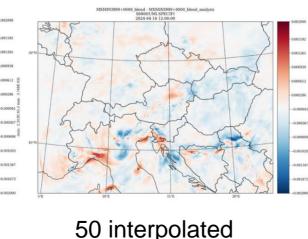
https://opensource.umr-cnrm.fr/projects/accord/wiki/HOOF

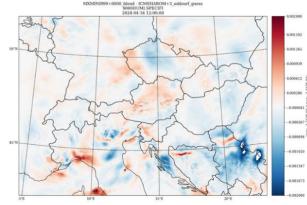
Planned fixes (mainly updated h5py library or another solution, small fixes)

Al-based radar reflectivity inversion

- Motivation: to learn how an AI/ML method can be plugged into NWP codes, to replace a statistical obs. operator.
- Training dataset: all data from Bayesian inversion process: observations (refl), guess (refl,rh), metadata
- OPERA radars on SI-RUC domain, year 2023
- Training target: profiles with good match between model and obs (refl)
- Neural network using spatial structure, ongoing.




EnVar testing: ensemble perturbations


ARSO METEO

- Testing different options for ensemble information to EnVar (16 member Claef-1k):
 - > 50-member C-LAEF1k ensemble for 16th April 2024 0 UTC cold front case as reference,
 - LAM perturbations, including second-last run,
 - global perturbations,
 - mixed perturbations.
- the flow-dependency is well-captured with EnVar
- combining LAM and global perturbation produces potentially unrealistic covariances over large areas + spurious ripples in the analysis fields

IFS members

Institute

LAM/global (16+32) mixed members

Introduction of Surfex to ALARO DA cycle

Lace stay at ARSO by Anamarija Zajec (DHMZ)

- Comparison of operational ALARO assimilation cycle with ALARO w/SURFEX for a 7 day period

* cy43t2 with SURFEX modset (which is included in AL cy49t1)

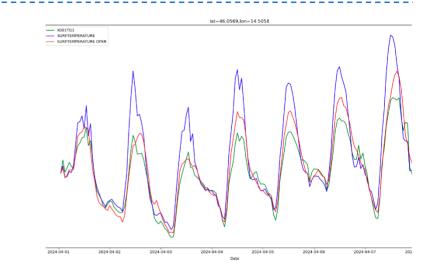
* Operational suite: 1km domain RUC cycle with 1h assimilation window, 3DVAR upper air assimilation, surface fields updates via CANARI

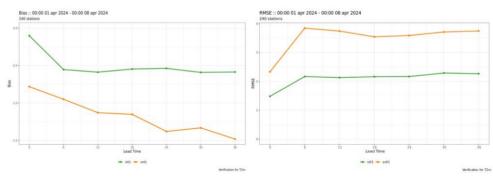
* Experiment: Same as operational, except using Surfex, TG1 and WG1 updates via CANARI/OI_MAIN

* Initial .sfx file produced via EE927 run from ELSCF files, subsequently cycling of .sfx files

- Technical issues:

* SFX.SST produced by CANARI clearly erroneous


* Certain (unknown) fields in CANARI sfx analysis produce segfault at integration (not repeatable)


* Issues mitigated with Python scripts and hacks

- Results:

* Degradation of scores

* Difference between X001TG1 in .sfx file and SURFTEMP in ICMSH file

Czech Hydrometeorological Institute

ARSO METEO Slovenia

- Migration of RUC to a temporary HPC
- Improve routine verification (focus on regional AWS, hourly scale) with HARP
- Migration from cy43t2 to cy48t3 (export version), 3D-Var via OOPS
- Cooperation with Geosphere on Claef1k (convection-permitting ensemble, EnVar)
- Coorperation with DHMZ on all-sky IR radiances (IASI, IRS)

Regional Cooperation for Limited Area Modeling in Central Europe

Thank you for your attention.

