Regional Cooperation for Limited Area Modeling in Central Europe

Impact of radar reflectivity assimilation

Suzana Panežić, Alena Trojáková and Antonín Bučánek

ARSO METEO

- OPERA radar data
- Model setup
- Code modifications and blacklisting
- 1D Bayesian retrieval recap
- Case studies
- Drying effect
- Dry observation amount reduction
- Preliminary conclusions

- OPERA data (OIFS)
 HOOF v1.9
 - SplitMeasurements = False
 corrupted log file naming
- BATOR
 - rejected radars: Poland, Romania, Serbia
 - Issue: no TH data in OPERA files

Model setup

ALARO v1B with prognostic graupels

- cy43t2ag
- ▶ domain: $\Delta x = 2.3$ km; $\Delta t = 90$ s
- 87 vertical levels; 1069x853 GP;
- BlendVar scheme: DF blending (filter at trunc. E102x81) followed by 3D-Var
- 6h assimilation cycle
- Assimilated observation: SYNOP, TEMP, AMDAR, SEVIRI, Mode-S MRAR CZ, Mode-S EHS from KNMI, HR-AMV, wind profiler, ASCAT winds

- Code modifications back-phased from cy46t1 to cy43t2 (provided by Maud Martet):
 - reflectivity obs operator: code cleaning & added cloud ice
 - bayesian inversion: more data used in lower layers, low values of double polarized S band radars no longer rejected, bug corrections
 - thinning: too close observation suppression
- Blacklisting
 - Single polarization S band radars values below 8 dBZ Romania. Serbia. Croatia
 - X band radars no radars of this type available in OPERA for non-French LACE radars
 - Iow elevations for the selected French radars located near mountains - OPERA data ok for QC threshold 0.7 in BATOR

- 1. definition of neighbouring model reflectivity profiles
 - number of profiles
 - boxsize

- ► 1. definition of neighbouring model reflectivity profiles
- 2. inversion of observed REFL to pseudo observed RH

$$ZREHU(jl,jc) = \frac{\sum_{jp} ZHU(jl,jc,jp) \exp\left(\frac{-\sum_{jc} (O_{refl}(jl,jc) - M_{refl}(jl,jc,jp))^2}{2\sigma^2 N(jp)}\right)}{\sum_{jp} \exp\left(\frac{-\sum_{jc} (O_{refl}(jl,jc) - M_{refl}(jl,jc,jp))^2}{2\sigma^2 N(jp)}\right)}$$

σ act as weight in the 1D Bayesian inversion:
 if too large σ the retrieval will be a weighed average of many model profiles (possibly biased towards the mean value);
 therefore the small σ value was originally proposed by Wattrelot

- 1. definition of neighbouring model reflectivity profiles
- 2. inversion of observed REFL to pseudo observed RH
- 3. quality control & thinning
- 4. pseudo observed RH assimilated by standard 3D-Var

► Experiments:

EXP	NOBSPROFS	BOXSIZE	σ [dBZ]	
ALAS				no radar DA
DREF	225	200	5.0	REFL DA
P121	121	200	5.0	REFL DA
P289	289	200	5.0	REFL DA
B121	121	100	5.0	REFL DA
B081	81	100	5.0	REFL DA
B049	49	100	5.0	REFL DA
ZS12	225	200	1.2	REFL DA
ZS02	225	200	0.2	REFL DA

Case studies

12.08.2020. 12UTC -14.08.2020. 18UTC DA cycle

- Low sensitivity on number of profiles
- Some sensitivity to the selection box size

OMG of RH (avg_RH - RH), pseudoREFL (obs_REFL - avg_REFL) and REFL for q_1dv&q_1 != NULL & active per DBZ-classes

Case studies

ARSO METER

12.08.2020. 12UTC -14.08.2020. 18UTC DA cycle

- Largest sensitivity on observation error
- Drying effect in all experiments

OMG of RH (avg RH - RH), pseudoREFL (obs REFL - avg REFL) and REFL

14.- 29.08.2020 00UTC production

 Drying of the atmosphere (red)

14.- 29.08.2020 **00UTC** production Degradation of the forecast (blue)

Precipitation removed by radar reflectivity inclusion in data assimilation (ALAS, DREF, ZS02 compared to precipitation estimation radar+gauges)

ARSO METER

 Dry obs (flgdyn=0)
 too many obs above 200hPa ! (to be removed ?)

Indrometeorological

Dry obs (flgdyn=0)

ARSO METEO Slovenia

 Moist obs (flgdyn=8)

ARSO METEO Slovenia

 Dry case
 Drying even when there is no precipitation in the domain

Dry observation amount reduction

- NDRY
 - All dry pseudo-observation (flgdyn=0) removed
- NDRP
 - All completely dry (obs) profiles removed
- HIRL
 - Modified HIRLAM solution which expects that there is low precision of detection threshold or problem in model obs operator which is unable to produce low enough values (M_{refl} < 0)</p>

Dry observation amount reduction

Frequency bias per FC ranges, per category

FC Range: 6h

precipitation is kept in the system Spurious convection with large amounts of

More

▶ 20

Dry observation amount reduction

 More precipitation is kept in the system

 Spurious convection with large amounts of precipitation

- Small sensitivity to the selection box size
- Smaller observation error shows a better fit of pseudo-observed reflectivity to observation, but a larger bias of pseudo observed relative humidity
- Drying effect in lower troposphere and mixed signal above
- Reduction of dry observation exp. showed some sensitivity but no sensible solution for the drying effect was found
- Next steps: radar detection threshold in BATOR should be revisited, modification of weights in the inversion routines, investigate radar observation operator

Czech Hudrometeorological Regional Cooperation for Limited Area Modeling in Central Europe

Thank you for your attention.

