

B-matrix: general overview and theoretical aspects

LACE DAWD & DAsKIT Working Days

Pierre BROUSSEAU DESR/CNRM/GMAP Météo-France

1) Introduction

2) B modeling in IFS/arpege/aladin/arome

3) B estimation

4) B variations : Flow dependency / hourly cycle

Questions

SECTI	ON
-------	----

#	Question	Specific
1	When computing a climatological B-matrix by an ensemble technique, how many members and how long should be the period to consider and why ?	Pierre
2	Ideally, each B-matrix should be computed for each geographical domain and model geometry. However, is it possible to short-cut B-matrix computation: i) by cutting it from a geographically larger B-matrix; ii) from a lower resolution B-matrix; iii) from a higher resolution B-matrix; from a different vertical resolution B-matrix?	Pierre
3	Are there available tools to perform the operations mentioned in 2 ?	Pierre
4	Which are the different aspects to take into account, when computing B-matrix by an ensemble technique, if the model is coupled by either IFS/ECMWF or ARPEGE ?	Antonin
5	Is it possible to cut a LAM B-matrix from a global B-matrix ? for instance, to cut AROME B-matrix from IFS/ECMWF ?	Pierre
6	In case of 5, could B-matrix be used as a first B-matrix in operations ?	Pierre
7	How important it is to use the same forecast length in the sampling of differences for B and in the actual DA cycling (e.g. forecasts of 3h length for 3-hourly cycle or 1h for hourly cycle)	Pierre
8	How much impact is expected from daily recalculation of B (in 3D-Var) if a real-time ensemble is available? Is it worth the effort or is it better to plan to set up the EnVar in this case?	Pierre
9	What is the impact of different B-matrices over different types of observations.	Antonin
10	How much is it worth to invest on B-matrix before implementing a local operational DA system	Antonin
11	What is the role and NLEVBAL0 and NLEVBAL1 parameters for limiting the vertical extend of balances in B?	Pierre

1) Introduction

2) B modeling in IFS/arpege/aladin/arome (Q5,Q6)

3) B estimation (Q1, Q2, Q3)

4) B variations : Flow dependency / hourly cycle (Q7, Q8)

Linear estimation theory

Data assimilation

 Linear Estimation Theory : the Best Linear Unbiased Estimate

B propagates and filters the information provided by the observations

B propagates and filters the information provided by the observations

B propagates and filters the information provided by the observations

- \rightarrow B determines :
- the intensity of the bakground modification at the observation location ($\sigma^{\scriptscriptstyle b}$)
- how this modification is propagated on the horizontal and the vertical (correlations)
- how these modifications are propagated on the others variable of the control variable (cross-correlations)
- \rightarrow B should depend on :
- the model and its resolution (Stefanescu et al 2006 : arpege Vs aladin, Brousseau et al 2011 : arome Vs aladin)
 - the geographical area (mid-latitude Vs tropical, sea Vs mountain, ...)
 - the meteorological situation (Berre et al. 2007, Brousseau et al. 2012)
 - the density of observation network (Belo-pereira and Berre 2006)

1) Introduction

2) B modeling in IFS/arpege/aladin/arome (Q5,Q6)

3) B estimation (Q1, Q2, Q3)

4) B variations : Flow dependency / hourly cycle (Q7, Q8)

B modeling

Ist difficulty : due to the large size of the system in NWP models, B can not be explicitly written and stored : B is modelized by different operators : Parrish et al. 1997, Derber and Bouttier 1999 for global model, *Berre* 2000 for LAM under some asumptions (homogeneity, isotropy, stationnarity,...

Vorticity
$$\zeta = \zeta$$
Divergence $\eta = \mathcal{MH}\zeta + \eta_u$ Mass field $(T, P_s) = \mathcal{NH}\zeta + \mathcal{P}\eta_u + (T, P_s)_u$ Specific Humic $q = \mathcal{QH}\zeta + \mathcal{R}\eta_u + \mathcal{S}(T, P_s)_u + q_u$

Berre 2000 : multivariate formulation for q in LAM

 \mathcal{H} is an horizontal balance operator

 $\mathcal{M}, \mathcal{N}, \mathcal{P}, \mathcal{Q}, \mathcal{R}$ and \mathcal{S} are vertical balance operators relating vertical profiles of predictors and of predictands.

B modeling

$$\mathbf{B} = \overline{\mathbf{B}} = \mathbf{K} \mathbf{B}_{\mathbf{u}} \mathbf{K}^{\mathrm{T}}$$

$$\mathbf{B}_{u} = \begin{pmatrix} \mathbf{C}_{\zeta} & 0 & 0 & 0 \\ 0 & \mathbf{C}_{\eta_{u}} & 0 & 0 \\ 0 & 0 & \mathbf{C}_{(T,P_{s})_{u}} & 0 \\ 0 & 0 & 0 & \mathbf{C}_{q_{u}} \end{pmatrix}$$

$$\mathbf{K} = \begin{pmatrix} I & 0 & 0 & 0 \\ \mathcal{M}\mathcal{H} & I & 0 & 0 \\ \mathcal{N}\mathcal{H} & \mathcal{P} & I & 0 \\ \mathcal{Q}\mathcal{H} & \mathcal{R} & \mathcal{S} & I \end{pmatrix}$$

C corresponds to vertical error covariances matrices for each predictor, with one matrix per total spectral wavenumber, I is the identity matrix and subscript Tdenotes transposition. Question 5 : Is it possible to cut a LAM B-matrix from a global B-matrix ? for instance, to cut AROME B-matrix from IFS/ECMWF ?

Question 5 : Is it possible to cut a LAM B-matrix from a global B-matrix ? for instance, to cut AROME B-matrix from IFS/ECMWF?

$$\mathbf{B} = \overline{\mathbf{B}} = \mathbf{K} \mathbf{B}_{\mathbf{u}} \mathbf{K}^{\mathrm{T}}$$

$$\mathbf{B}_{u} = \begin{pmatrix} \mathbf{C}_{\zeta} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{\eta_{u}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{C}_{(T,P_{s})_{u}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{C}_{q_{u}} \end{pmatrix}$$

$$\mathbf{K} = \begin{pmatrix} I & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathcal{M}\mathcal{H} & I & \mathbf{0} & \mathbf{0} \\ \mathcal{N}\mathcal{H} - \mathcal{P} & I & \mathbf{0} \\ \mathcal{Q}\mathcal{H} & \mathcal{R} & \mathcal{S} \end{pmatrix}$$
Univariate specific humidity in global while \mathcal{R} reaches 20 % and \mathcal{S}
30 % of the total varaince for g in LAM

 $\mathbf{K} = \begin{pmatrix} I & 0 & 0 & 0 \\ \mathcal{MH} & I & 0 & 0 \\ \mathcal{NH} & \mathcal{P} & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix} \qquad I \text{ don't know if a tool can be written to convert triangular truncation to an elliptic one, I'm sure that Q. R and S for LAM can't be derived from C$

 $\mathbf{B} =$

triangular truncation to an elliptic one, I'm sure that Q, R and S for LAM can't be derived from 0 in global ...

1) Introduction

2) B modeling in IFS/arpege/aladin/arome (Q5,Q6)

3) B estimation (Q1, Q2, Q3)

4) B variations : Flow dependency / hourly cycle (Q7, Q8)

B estimation

- **2nd difficulty : the true state of the atmosphere is unknown : true background errors are also unknown :** proxi of background error are obtained from forecast differences :
 - differences between forecasts started from successive analyses and valid at the same time : NMC method (parrish et al. 1997
 - differences from an ensemble assimilation (EDA) Fisher (2003), more realistic than the NMC method, thanks to a better representation of data density effects in particular (Berre et al. 2006)

Question 1 : When computing a climatological B-matrix by an ensemble technique, how many members and how long should be the period to consider and why ?

- Mathematical constraint : positive defined B matrix needs for a number of forecast differences higher than the number of vertical levels :
 - B of the day : few assimilation times x numerous members
 - climatological B : few members x numerous dates (numerous and different meteorological situations sampled)

For arome operational 1.3L90 -> 120 forecast differences : 6 members x 10 winter days (00UTC)

+ 6 members x 10 summer days (12UTC for convertice)

Question 1 : When computing a climatological B-matrix by an ensemble technique, how many members and how long should be the period to consider and why ?

 Yann Michel tried with a extended data set (400 members) : differences only on cross-correlations :

Ensemble Data Assimilation

ENS-SU Vs ENS-DA

Question 2 : is it possible to short-cut B-matrix computation: i) by cutting it from a geographically larger B-matrix; ii) from a lower resolution B-matrix;

Variance spectra : stronger uncertainties for smaller scales

ENS-SU Vs ENS-DA

- Spin-up weaker using ENS_DA B matrix
- Arome-france 1-h cycle is not possible using ENS_SU : too much spin-up brousseau et al.2016

ENS_DA accentuates the small scales of the analysis increment

ENS-SU Vs ENS-DA

- Precipitation scores against raingauges for a 3 weeks period

- 25/05/2009 convective system : observed and simulated reflectivities at 19 UTC

1) Introduction

2) B modeling in IFS/arpege/aladin/arome (Q5,Q6)

3) B estimation (Q1, Q2, Q3)

4) B variations : Flow dependency / hourly cycle (Q7, Q8)

- Homogeneity asumption : average over the domain
- Temporal average over a day : B varying daily

- Same innovation at 850 hPa
- Vertical cross section of the temperature analysis increment
 - Horizontal cross section of the wind increment at 950 hPa

- But very weak impact in arome on the forecast performances compared to ENS_DA Vs ENS_SU (brousseau et al. 2012)
- ... and negative impact of grid-point sigma-b (Benjamin Menetrier PhD)

Slight positive impact in CERRA reanalysis (Adam El Said)

Question 7 : How important it is to use the same forecast length in the sampling of differences for B and in the actual DA cycling (e.g. forecasts of 3h length for 3-hourly cycle or 1h for hourly cycle)

- σb depend on the guess range and are expected to increase with this range
- for arome-france hourly cycle : estimated σb from the arome EDA at a 1 h forecast range are close to (and sometimes higher than) those obtained at 3 h forecast range, whereas smaller σb were expected.
- And diagnosed : using rmse and desroziers diagnostics in an iterative process leading to : σb1h/σb3h=0.5

Table 1. The first row shows the ratios of root mean square errors of 1 and 3 h range AROME-France forecasts for different observation types. The lower rows show ratios of background-error standard deviation of 1 and 3 h range backgrounds estimated in the observation space using Desroziers *et al.* (2005) during the iterative process. The last column shows averaged values over all observation types.

Obs	T_{2m}	RH_{2m}	Gr. GPS	Rad. W	Rad. RH	Air. T	Air. W	SEVIRI $T_{\rm B}$	IASI $T_{\rm B}$	Average
rmse (1h) rmse (3h)	0.89	0.77	0.81	0.87	0.8	0.83	0.78	0.83	0.77	0.81
$\alpha_{n+1}(\alpha_n$) for									
α_n										
1	0.67	0.69	0.80	0.76	0.74	0.66	0.76	0.74	0.85	0.74
0.75	0.55	0.58	0.67	0.63	0.63	0.54	0.64	0.62	0.70	0.61
0.6	0.48	0.48	0.49	0.51	0.47	0.45	0.52	0.55	0.64	0.51
0.5	0.47	0.49	0.48	0.52	0.45	0.43	0.51	0.56	0.60	0.50

 So, the arome-france hourly cycle uses a 3h forecast B matrix with REDNMC=0.5

Conclusion

 \rightarrow B plays a key role in a DA system as it determines how the observations modify the background to build the analysis

 \rightarrow B should depend on the model and its resolution, the geographical area, the meteorological situation, the observation network

 \rightarrow due to the large size of the NWP system, B can not be explicitly written and stored. It is modelized

 \rightarrow the true state of the atmosphere is unknown : proxi of background error are obtained from forecast differences :

- ensemble in spin-up mode can provides a first proxi of B
- EDA provides a "better" one

 \rightarrow offline EDA => climatological B

online EDA => some parts of the modelized B can become flow dependent ... but with slight impact on forecast performances ..

More promissing results obtained from 3DEnvar ...

3DEnvar

 \to B in no modelized but directly estimated from the ensemble perturbations X (~50 members) and localized to avoid long distance spurious correlations

 $\texttt{3D-Var}: \quad \mathbf{B} = \overline{\mathbf{B}} = \mathbf{K} \mathbf{B}_{\mathbf{u}} \mathbf{K}^{\mathrm{T}} \quad \rightarrow \texttt{3DEnVar}: \mathbf{B} = \widetilde{\mathbf{B}}_{e} = \mathbf{C} \text{ o } \mathbf{X} \mathbf{X}^{\mathrm{T}}$

Relative improvement for 3DEnvar Vs 3DVar against IFS analysis :

3DEnvar

 \to B in no modelized but directly estimated from the ensemble perturbations X (~50 members) and localized to avoid long distance spurious correlations

3D-Var: $\mathbf{B} = \overline{\mathbf{B}} = \mathbf{K} \mathbf{B}_{u} \mathbf{K}^{\mathrm{T}} \rightarrow$ 3DEnVar: $\mathbf{B} = \widetilde{\mathbf{B}}_{e} = \mathbf{C} \circ \mathbf{X} \mathbf{X}^{\mathrm{T}}$

Locally the increment can be seen as a linear combination of the perturbations : it is fully flow dependent

Thank you for your attention...