

Improving heavy rainfall forecast by assimilating surface precipitation in the convective scale model AROME: case study of the Mediterranean event of 04 November 2017

Zahra Sahlaoui Moroccan Meteorological General Direction

In collaboration with Eric Wattrelot and Jean François Mahfouf

Sahlaoui Z, Mordane S, Wattrelot E, Mahfouf J-F. Improving heavy rainfall forecasts by assimilating surface precipitation in the convective scale model AROME: A case study of the Mediterranean event of November 4, 2017. Meteorol Appl. 2020; 27:e1860. <u>https://doi.org/10.1002/met.1860</u>

Outlines

- Introduction
- 1D-Var + 3D-Var assimilation of precipitation
 - 1D-Var assimilation
 - Precipitation data : Antilope analysis
- Impact of precipitation assimilation on heavy rain forecast
 - Case overview
 - Experimental setup
 - Assessment of the 1D-Var step
 - Impact on model dynamic
 - Impact on precipitation forecast
- Conclusions and perspectives

Introduction

Meres Extreme precipitation events in the western Mediterranean Sea

1D-Var + 3D-Var assimilation of precipitation 1D-Var assimilation

SOLUTIO

The observation operator involves nonlinear moist processes such as condensation and convection

Linearized physics

- large-scale condensation scheme (Tompkins and Janisková, <u>2004</u>)
- 2. convection scheme (Lopez and Moreau, 2005).

$$J(x) = \frac{1}{2}(x - x_b)^T B^{-1}(x - x_b) + \frac{1}{2} \left[\frac{H_{1D}(x) - R_o}{\sigma_o} \right]^2$$

1D-Var + 3D-Var assimilation of precipitation 1D-Var assimilation

1D-Var + 3D-Var assimilation of precipitation ANTILOPE precipitation analysis

Champeaux, J.L., et al. (2011) Quantitative precipitation estimations using rain gauges and radar networks: inventory and prospects at Météo-France.

https://www.wmo.int/pages/prog/www/OSY/Meetings/ET-SBRSO_ET-RSO-2011/DocPlan/INF.3.3.2 Report_METEOFRANCE_QPE.pdf

Impact of precipitation assimilation on heavy rain forecast Case overview : November 04, 2017

- a) Anasyg-Presyg
- b) Satellite imagery
- c) Lightning impact
- d) Rain-gauge measurements

Impact of precipitation assimilation on heavy rain forecast Experimental setup

Experiment name	Observations assimilated
REF	Conventional (radiosondes, wind profilers, ships and buoys reports, aircraft, automatic land station), SATOB wind, ATMS, SEVIRI, GNSS-ZTD and radar radial velocity.
RAD_Z	REF + radar reflectivity (1D-Bayesian, Wattrelot <i>et al</i> 2013)
RAD_RR	REF + radar rain

Wattrelot E, Caumont O and Mahfouf J-F. 2013. Operational Implementation of the 1D+3D-Var Assimilation Method of Radar Reflectivity Data in the AROME Model. MonthlyWeatherReview., 142: 1852-1873

Impact of precipitation assimilation on heavy rain forecast 1D-Var assessment

	FG	AN
Bias	1.96	0.51
stdv	2.44	1.17
DIFF		-1.45
RMSD		-1.85

Surface precipitation (mm) bias and standard deviation (stdv) in terms of first guess and analysis departures.

```
DIFF = |observation - AN| - |observation - FG|
RMSD = rms(observation - AN) - rms(observation - FG)
```

Janisková, M. (2015) Assimilation of cloud information from space-borne radar and lidar: experimental study using a 1D+4D-Var technique.Q.J.R. Meteorol. Soc., 14, 2708-2725. doi:10.1002/qj.2558

Impact of precipitation assimilation on heavy rain forecast Impact on humidity initial conditions

Analysis departures (RMSE) for the brightness temperature of SEVIRI and ATMS moist sensitive channels for the three experiments computed at 0000 UTC on November 4, 2017

Impact of precipitation assimilation on heavy rain forecast Impact on model dynamics

Geopotential height in decameter (gpdam) of the 1.5 PVU for REF, RAD_Z and RAD_RR at 1700 UTC on November 4, 2017, and the METEOSAT image (channel WV 7.3 µm) at 1742 UTC

Impact of precipitation assimilation on heavy rain forecast Impact on model dynamics

Pseudo-adiabatic potential temperature and vertical velocity at 600 hPa at 1700 UTC on November 4, 2017, for the REF, RAD_Z and RAD_RR

Impact of precipitation assimilation on heavy rain forecast Impact on precipitation forecast

24-hours accumulated precipitation analysed by ANTILOPE (a) and simulated by AROME: REF (b), RAD_Z (c) and RAD_RR (d).); The differences against REF for RAD_Z (e) and RAD_RR (f).

Impact of precipitation assimilation on heavy rain forecast Statistical verification

24 hours accumulated precipitation scores (threshold of 50mm) for the three experiments against rain gauges over the study area for 4thNovember 2017.

Two-step method :

- ✓ 1D-Var to retrieve humidity profiles from precipitation observation
- \checkmark 3D-Var assimilation of the humidity pseudo profiles
- ✓ Case study : Mediterranean event of November 04, 2017
- \checkmark Assimilation of precipitation :
 - ✓ dynamical fields : more favorable for convection occurrence.
 - $\checkmark\,$ positive impact on precipitation forecast
- Need for more case studies
- Quality control (bias correction, observation error ...)

TCWV (Total Column Water Vapor)?

Thank you for your attention