Update on AROME-RUC (ZAMG)

Florian Meier

Outline

- Observation impact
- Spin_up
- wind profiler
- radar + bator cy40t1->cy43t2
- Assimilation of private weather stations

DFS in AROME-RUC (old setting noVARQC, larger rejection limit

Absolute Degree of Freedom for Signal (DFS)

DFS in AROME-RUC current setting:

Absolute Degree of Freedom for Signal (DFS)

Zentralanstalt fü Meteorologie und Geodynamik

AROMEDA

Spin-Up

- -45min to 0 min IAU is very efficient in filtering (black); accuracy?
- no_IAU: directly started from Minimization output
- 2x IAU (OPER) still better than without IAU especially till +20min, but not so much at +1h
- Open loop has most spin-up issues as there is interpolation of FG 2.5 -> 1.2km
- Most of the spin up until +60min gone

Assimilation of wind profilers / wind turbines/ SODAR

- KNMI reported problem with height attribution (Videomeeting, no details)
- Observation is function of height, but model needs pressure

 >BATOR ecriture: "conversion altitude en pression si necessaire"
 assumes standard atmosphere, which can be far from reality especially in PBL
 error of 20m and more
- Take pressure/temperature/height relation from FG instead (barometric equation)
 -> coded in hretr.F90/hretr_conv.F90 (cy43t2) (see LACE forum)
 -> KNMI has different solution in hop.F90
- Depending on FG, which is not so nice, if FG is incorrect, but assumption of standard atmosphere can deviate even more (T inversion etc.)
- Profiler data from OPLACE -> adaptation of param.cfg "WARNING template inconnu"

in BATOR many different bufr templates

- blacklist VAD profiles in LISTE_NOIR_DIAP
- SODAR to obsoul

Assimilation of wind profilers / SODAR

ZAMG Zentralanstalt für Meteorologie und Geodynamik

Assimilation of wind profilers / SODAR case study

- Yellow WP+SODAR with height attribution from standard atmosphere
- Blue as yellow, but height attribution from First Guess
- Red as blue, but without SODAR only WP assimilated
- Green: reference without WP and SODAR
- -> in principle nice impact, but SODAR needs better quality checks

Reflectivity in BATOR cy40t1 (HIRLAM modified) vs cy43t2 MF

cy40t1

17th August 09UTC

Reflectivity in BATOR cy40t1 (HIRLAM modified) vs cy43t2 MF

cy40t1

INCA Precip. Analysis [mm] 20200817 09 UTC, 01 h sum

servation 20200817 09 cy43t2

Doppler wind in BATOR cy40t1 (HIRLAM modified) vs cy43t2 MF

 $3^{\circ} \wedge$

Private weather stations about 8000 stations

Stationheight

10m wind

Private weather stations about 8000 stations

Further plans

- Assimilation tests with private weather stations
- Poor man's ensemble
- Optimise quality control
- GNSS on trains
- Switch to cy43t2 -> include more radar stations
- Test of lead time /domain size extension
- Initialisation of Hydrometeors

Case study effect of LHN 25th june 2020 12-15UTC

AROME-AUSTRIA prec [mm/03h], 20200625 12 UTC + 03 h (= 20200625 15) AROME-AUSTRIA prec [mm/03h], 20200625 12 UTC + 03 h (= 20200625 15) 100.0 100.0 49° 49 50.0 50.0 45.0 45.0 40.0 40.0 35.0 35.0 30.0 30.0 48° 48° 25.0 25.0 20.0 20.0 15.0 15.0 10.0 10.0 47 47° 5.0 5.0 1.0 1.0 0.5 0.5 0.2 0.2 0.1 0.1 0.0 0.0 10° 11 12° 13° 14° 15° 16' 17 13° 14° 15° 16 17 [mm] **RUC+LHN RUC noLHN** 100.0 50.0

Geodynamik

45.0 40.0 35.0 30.0

25.0 20.0 15.0 10.0 5.0

> 1.0 0.5 0.2 0.1

> 0.0

ICE-CONTROL 25.04.2013 Folie 17

Spin-up and cycling startegy

ECHKEVO spin-up diagnostics

- Spin-up >1h
- 2 hourly slightly better than 1 hourly
- Nudging/LHN has no significant impact here
- IAU filtering works
- "Open loop" is especially problematic 2.5km ->1.2km

Reasons:

B-Matrix not well defined? Complex orography and domain not optimal?

Hourly or 2 hourly cycling?

standard hourly cycling performed extremly bad compared to two hourly (Bias+RMSE) Idea:

Start one hour in advance and push forecast towards analysis to reduce spin-up time avoid competition of IAU and Nudging

total_precipitation_area: Mean BIAS from: 20160701 to 20160716

total precipitation area: Mean MAE from: 20160701 to 20160716

1 Hourly with extended IAU dashed vs 2 hourly solid

Validation of precipitation summer

Fraction Skill Score FSS July 2016

difference in FSS to freshest AROME 2.5km

Validation of precipitation winter

Fraction Skill Score FSS January 2017 difference in FSS to freshest AROME 2.5km

Validation July 2016, January 2017 wind

AROME 2.5km soild; AROME-RUC dashed

Geodynamik

Validation of Latent Heat Nudging 1st-16th July 2016

- slight improvement up to +2h •
- expectation from literature about +6h •
- poor statistics (16 days) and small domain

-0.04

-0.08

further tuning necessary

$$\sum \frac{FSS_{exp} - FSS_{ref}}{1 - Fss_{ref}} \quad if \ Fss_{exp} > Fss_{ref}$$
$$+ \sum \frac{FSS_{exp} - FSS_{ref}}{1 - Fss_{exp}} \quad \text{else}$$

Absolute Degree of Freedom for Signal (DFS)

Radar DOW assimilation still problematic

AROME-AUSTRIA prec [mm/03h], 20160702 18 UTC + 03 h (= 20160702 21)

meteorologie und Geodynamik

1st-16th July 2016

- even the not tuned VARQC can improve the precip. forecast
- difficult to switch on VARQC for only one obstype

0.08

0.04

0.00

-0.04

-0.08

VARQC of radar? (gross errors get reduced weight)

Conclusions and plans

- AROME-based Nowcasting is feasible
- Improvement in 10m wind (and gusts) (BIAS+MAE) and summer precipitation (FSS until +6h)
- Latent heat nudging improves mostly up to +2h, in single case more
- for us: hourly cycling only possible with long IAU filtering (complex terrain+B-Matrix?)
- Doppler wind has to much impact (aliasing remnants) -> VARQC might help
- Radar assimilation struggles, if no fitting feature is included in the first guess in the surrounding of an observation -> saturation of profile can help, but is dangerous if OBS has error, LHN can also help
 - Put AROME-RUC to operations within this year
 - Consider post-processing and visualisation
 - B-Matrix is currently updated with EDA approach coupled to C-LAEF ->tests
 - Quality control, especially for Doppler wind has to be re-considered
 - Inclusion of further observations: wind profiler, cloud assimilation, private weather stations, HRV AMVs

0.16

0.08

0.00

-0.08

-0.16

0.16

0.08

0.00

-0.08

-0.16

0.16

0.08

0.00

-0.08

-0.16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 runs init [UTC]

MAE (area mean)

AROME-OPER: thick lines AROME-RUC: dashed lines

MG Meteorologie und Geodynamik

BIAS (area mean)

AROME-OPER: thick lines AROME-RUC: dashed lines

ICE-CONTROL 25.04.2013 Folie 36

FDDA nudging in AROME (TAWES observations; Liu et al. 2006)

$$DISTANCE' = DISTANCE + R \frac{|z_{OBS} - z_{GP}|}{dzthres = 300m}$$

$$w_{xy} = \frac{R^{2}0.75^{2} - DISTANCE'^{2}}{R^{2}0.75^{2} + DISTANCE'^{2}} (\frac{ps_{GP}}{500hPa} + 1)$$

$$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t_{phys}} + G \frac{\sum_{i} w^{2}_{xyi}(y_{iobs} - x_{model})}{\sum_{i} w_{xyi}}$$

$$\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t_{phys}} + G \frac{\sum_{i} w^{2}_{xyi}y_{iobs}}{\sum_{i} w_{xyi}} - G \frac{\sum_{i} w_{xyi} x_{model}}{\sum_{i} w_{xyi}}$$

$$Dbservations at: +10 / 20 / 30min$$

$$x=T2m/RH2m/U10m$$

$$called from apl_arome.F90 after microphysics$$

10°E

15°E

r 1.455 - 1.307 - 1.188 - 1.069 - 0.950 - 0.832 - 0.713 - 0.594 - 0.475 - 0.356 - 0.238 - 0.119

0.000

20°E

Crashes without abort in minimization - NaN cost function

and the

AROME 22.09.2020

- •GOM arrays NaN (simulated synop observations) due to negative exchange coefficients PCH/PCD(5) in achmttl.F90/acntclstl.F90
- Most crashes avoidable, if synop stations Leiser Berge, Ptuj and Kostelní
 Myslová blacklisted
- •MF-Solution (P. Brousseau) NFPCLI =3 in 927 for old ISBA fields else NFPCLI =1
- •old ISBA surface fields (ADDSURF) are still used (roughness, vegetation, emissivity?)!
- •Idea: exchange fields with SURFEX values states avoided so far

Why AROME-Nowcasting?

Classical Nowcasting (at ZAMG INCA)

- fast (within few minutes)
- high resolution (<=1km)
- frequent: every 15/5min •
- simple combination of observations +NWP
- simple dynamics (motion vectors)
- struggles to predict rapidly envolving

non-linear events

LAM-NWP (at ZAMG AROME 2.5km)

- Slower: available within several hour
- coarser resolved
- less frequent (3 hourly)
- 3D-VAR + OI soil
- Full 3D-dynamics/complex physics •
- Long lead time beyond nowcasting range (+60h)

leteorologie und eodynam