

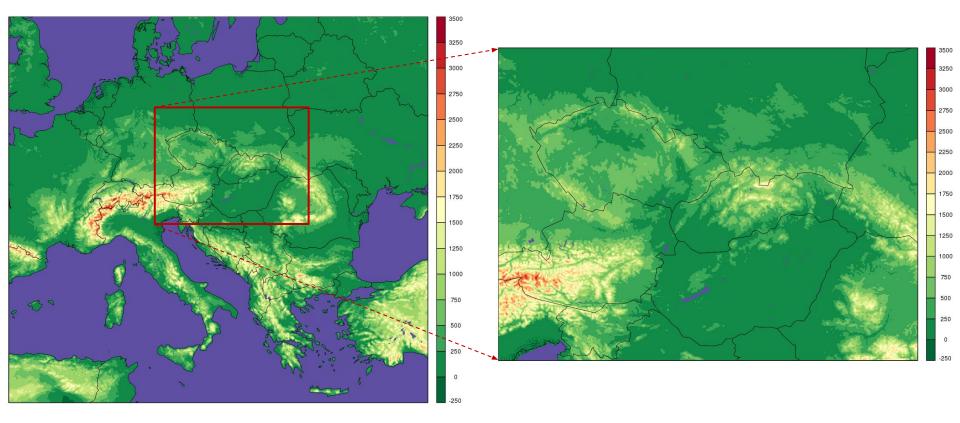
Data assimilation activities@SHMU

K. Čatlošová, M. Derková, M. Imrišek, M. Neštiak

RC LACE DA videoconference working days, 14-16/09/2020

Outline

- Operational and experimental setups of ALADIN systems
- Upgrade to CY43t2
- Scientific work
 - Katka: two individual presentations
 - Comparison of Mode-S EHS vs. MRAR
 - Assimilation of radial winds from radars
 - Imro (Martin): BLENDVAR e-suite, STD
 - MiNe: A-LAEF based QC, highres CANARI
- Future plans

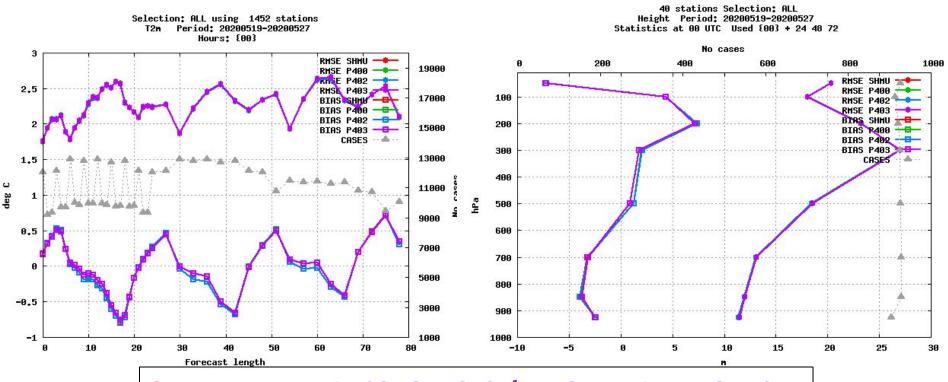

ALADIN/SHMU systems

СМС	ALARO/SHMU
status	operational
code version	CY40T1bf07_export
physics	ALARO-1vB
dx	4.5 km
pts	625 x 576
vertical levels	63
tstep	180 s
forecast ranges	78/72/72/60 (a' 1h)
coupling model	ARPEGE (long- & short cut off), 3h
assimilation	upper air spectral blending by DFI & CANARI surface assimilation
initialization	no initialization
НРС	IBM Flex System p460, linux

ALADIN/SHMU systems

СМС	ALARO/SHMU	ALARO/2km	AROME/2km				
status	operational	experimental					
code version	CY40T1bf07_export	CY43T2_bf11	CY40T1bf07_export				
physics	ALARO-1vB	ALARO-1vB	AROME-FRANCE				
dx	4.5 km	2.0 km					
pts	625 x 576	512 x 384					
vertical levels	63	87	73				
tstep	180 s	120 s	144 s				
forecast ranges	78/72/72/60 (a' 1h)	78/72/72/60 (a' 1h)	-				
coupling model	ARPEGE (long- & short cut off), 3h	ARPEGE, 1h	ALARO-1vB (4.5 km), 1h				
assimilation	upper air spectral blending by DFI & CANARI surface assimilation	downscaling					
initialization	no initialization	DFI	no initialization				
НРС	IBM Flex System p460, linux	IBM p755 running with IBM Flex System p460, linux					

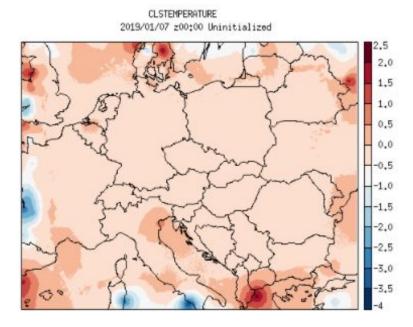
Operational & HR models domains

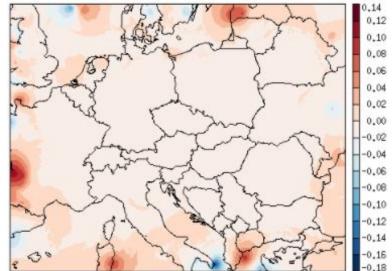


ALARO 4.5 km/L63

ALARO 2.0 km/L87 AROME 2.0 km/L73

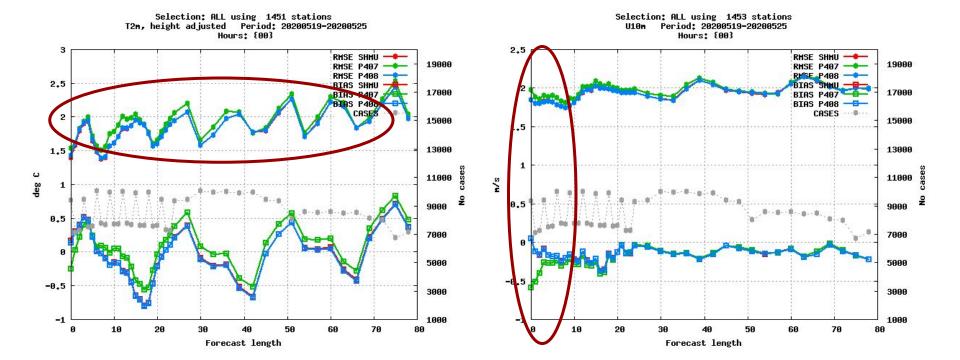
Upgrade to CY43T2bf10 - direct model


- Originally not planned -> only for new HPC, that is heavily delayed
- ee927, e001, DF BLENDING no particular problems, scores neutral


SHMU oper vs P403: CY43t2, but CANARI on CY40t1

Upgrade to CY43T2bf10 - CANARI

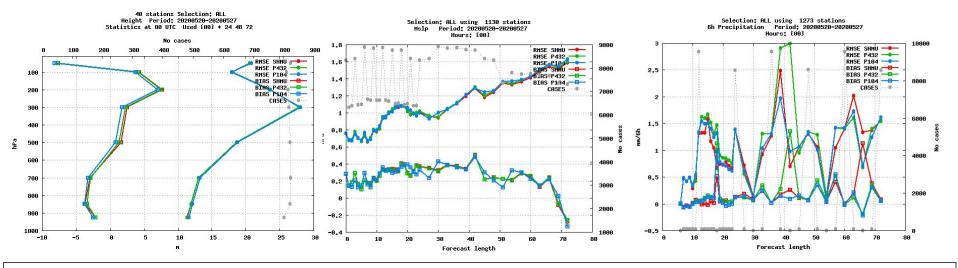
- Many changes in CANARI CY43t2 (OOPS)
- Changed LSREJ switch functionality CHMI solution of local blacklisting of stations surrounded by sea was adopted
- The analysis differences: CY40t1 vs. CY43t2:



CLSHUMI.RELATIVE 2019/01/07 z00:00 Uninitialized

Upgrade to CY43T2bf10 - surface DA

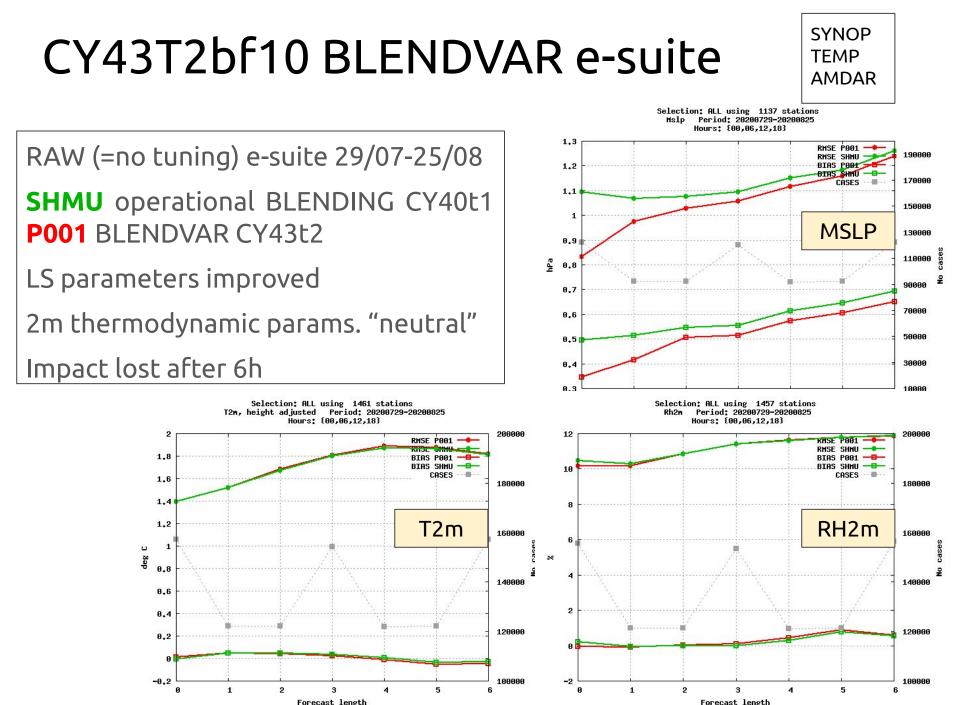
- BLENDSUR is used to get SST from Arpege analysis
- Scores problem in e-suite (P407) with surface DA on CY43t2, the rest of suite as in operations on CY40t1
- **P408** with corrected BLENDSUR scores wrt **SHMU** operational OK

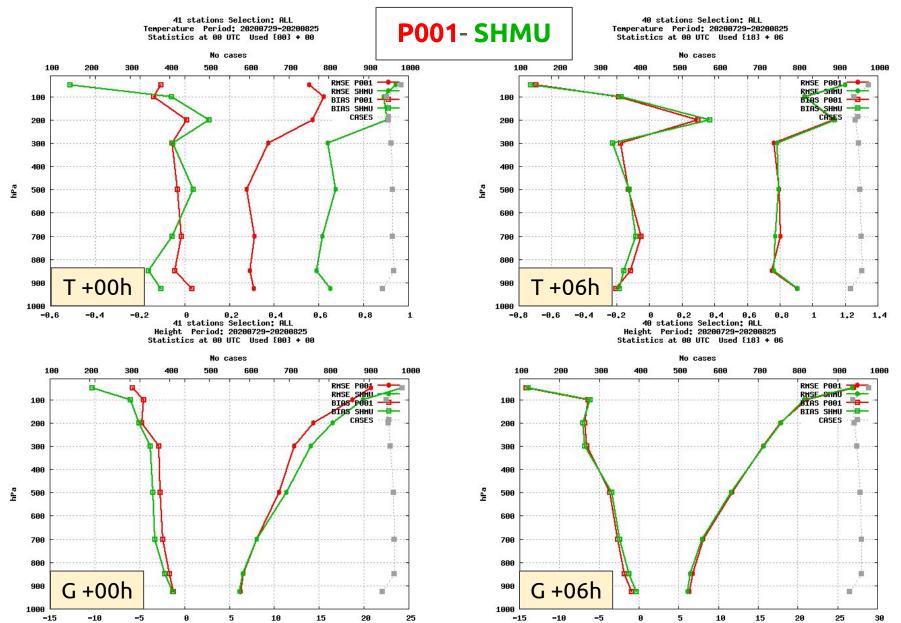

Upgrade to CY43T2bf10 - surface DA

blendsur.F90: the fields to be copied are hardcoded. Differences between local and export versions were not checked => stupid bug contaminated whole assimilation (didactic warning: cycle with caution!)

PuTTY	– 🗆 X	PuTTY	- 🗆 ×
+ <mark>+</mark> 20 lines: FILE NAMES	+ + 20 lines: FILE NAMES	+ + 73 lines: PROGRAM BLENDSUR	+ + 73 lines: PROGRAM BLENDSUR ^
blending variable: PROFRESERV.GLACE	blending variable: PROFRESERV.GLACE	CL_CVARC(:)='	CL_CVARC(:)='
blending variable: SURFTEMPERATURE	blending variable: SURFTEMPERATURE	CL_FNAME1='KUKU'	CL_FNAME1='KUKU'
blending variable: SURFRESERV.EAU	blending variable: SURFRESERV.EAU	CL_FNAME2='KIKI'	CL_FNAME2='KIKI'
blending variable: SURFRESERV.GLACE	blending variable: SURFRESERV.GLACE	CL_FNAME3='KOKO'	CL_FNAME3='KOKO'
blending variable: SURFRESERV.INTER	blending variable: SURFRESERV.INTER	ZSIGNL=0.	ZSIGNL=0.
blending variable: SURFRESERV.NEIGE	blending variable: SURFRESERV.NEIGE	ZSIGNS=0.	zsigns=0.
blending variable: SURFDENSIT.NEIGE		i_nvarb= <mark>10</mark>	I_NVARB= <mark>8</mark>
blending variable: SURFALBEDO NEIGE		I_NVARC=2 <mark>5</mark>	I_NVARC=21
copying variable: SURFZ0.FOIS.G	copying variable: SURF20.FOIS.G	CL_CVARB(1) = 'PROFTEMPERATURE '	CL_CVARB(1) = 'PROFTEMPERATURE '
copying variable: SURFALBEDO	copying variable: SURFALBEDO	CL_CVARB(2) = 'PROFRESERV.EAU '	CL_CVARB(2) = 'PROFRESERV.EAU '
copying variable: SURFEMISSIVITE	copying variable: SURFEMISSIVITE	CL_CVARB(3) = 'PROFRESERV.GLACE'	CL_CVARB(3) = 'PROFRESERV.GLACE'
copying variable: SURFET.GEOPOTENT	copying variable: SURFET.GEOPOTENT	CL_CVARB(4) = 'SURFTEMPERATURE '	CL_CVARB (4) = 'SURFTEMPERATURE '
copying variable: SURFIND.TERREMER	copying variable: SURFIND.TERREMER	CL_CVARB(5) = 'SURFRESERV.EAU'	CL_CVARB(5) = 'SURFRESERV.EAU '
copying variable: SURFPROP.VEGETAT	copying variable: SURFPROP.VEGETAT	CL_CVARB(6) = 'SURFRESERV.GLACE'	CL_CVARB(6)='SURFRESERV.GLACE'
+ + 9 lines: copying variable: SURFVAR.GEOP	+ + 9 lines: copying variable: SURFVAR.GEOP	CL_CVARB(7) = 'SURFRESERV.INTER'	CL_CVARB(7) = 'SURFRESERV.INTER'
copying variable: SURFGZ0.THERM	copying variable: SURFGZ0.THERM	CL_CVARB(8)='SURFRESERV.NEIGE'	CL_CVARB(8)='SURFRESERV.NEIGE'
copying variable: SURFALBEDO.SOLNU	copying variable: SURFALBEDO.SOLNU	CL_CVARB(9) = 'SURFDENSIT.NEIGE'	
copying variable: SURFALBEDO.VEG	copying variable: SURFALBEDO.VEG	CL_CVARB(10) = 'SURFALBEDO NEIGE'	
copying variable: SURFA.OF.OZONE	copying variable: SURFA.OF.OZONE	! constants	! constants
copying variable: SURFB.OF.OZONE	copying variable: SURFB.OF.OZONE	CL_CVARC(1) = 'SURFZ0.FOIS.G	CL_CVARC(1) = 'SURFZ0.FOIS.G
copying variable: SURFC.OF.OZONE	copying variable: SURFC.OF.OZONE	CL_CVARC(2) = 'SURFALBEDO	CL_CVARC(2) = 'SURFALBEDO
copying variable: SURFAEROS.SEA		CL_CVARC(3) = 'SURFEMISSIVITE '	CL_CVARC(3) = 'SURFEMISSIVITE '
copying variable: SURFAEROS.LAND		CL_CVARC(4) = 'SURFET.GEOPOTENT'	CL_CVARC(4) = 'SURFET.GEOPOTENT'
copying variable: SURFAEROS.SOOT		CL_CVARC(5) = 'SURFIND.TERREMER'	CL_CVARC(5) = 'SURFIND.TERREMER'
copying variable: SURFAEROS.DESERT		+ + 10 lines: CL_CVARC(6)='SURFPROP.VEGETAT'	+ + 10 lines: CL_CVARC(6)='SURFPROP.VEGETAT'
all files are closed	all files are closed	CL_CVARC(16) = 'SURFGZ0.THERM '	CL_CVARC(16) = 'SURFGZ0.THERM '
		CL_CVARC(17) = 'SURFALBEDO.SOLNU'	CL_CVARC(17) = 'SURFALBEDO.SOLNU'
		CL_CVARC(18) = 'SURFALBEDO.VEG '	CL_CVARC(18) = 'SURFALBEDO.VEG '
		CL_CVARC(19) = 'SURFA.OF.OZONE '	CL_CVARC(19) = 'SURFA.OF.OZONE '
		CL_CVARC(20) = 'SURFB.OF.OZONE '	CL_CVARC(20) = 'SURFB.OF.OZONE '
		CL_CVARC(21)='SURFC.OF.OZONE '	CL_CVARC(21)='SURFC.OF.OZONE '
		CL_CVARC(22) = 'SURFAEROS.SEA '	
		CL_CVARC(23) = 'SURFAEROS.LAND'	
		CL_CVARC(24) = 'SURFAEROS.SOOT '	
		CL_CVARC(25) = 'SURFAEROS.DESERT'	TOUTOUD 2000
		ISHOUR=3600	ISHOUR=3600
		ISDAY=3600*24	ISDAY=3600*24
		ZPEPS=REAL (1.E-07, JPRB)	ZPEPS=REAL (1.E-07, JPRB)
		<pre>! reading namel ist (file names and zsign t prop (4 NAMELENDER)</pre>	! reading namel ist (file names and zsign t
		READ (4, NAMBLENDSUR)	READ (4, NAMBLENDSUR)
		WRITE(*,*) "FILE NAMES"	WRITE (*, *) "FILE NAMES"
		+ +142 lines: WRITE(*,*) CL_FNAME1,' ',CL_FN	
		ZSUR3=0.	ZSUR3=0.

Short experiment with hourly coupling

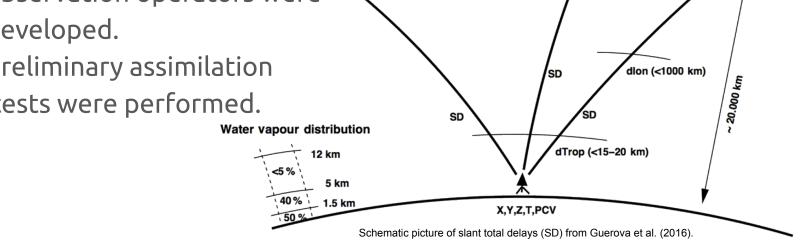

- 20.-27.05.2020, downscaling mode, hourly LBC in production
- Mixed results scores mostly neutral
- ?? geopotential, MSLP; messy precipitation scores
- No improvement in two realized case studies: overestimated wind gust, underestimated morning freezing temperatures


SHMU - P432: CY43T2_bf10 in e001 - P104: CY43T2_bf10 in e001 + 1h LBC

3D-Var on CY43T2bf10 for ALARO 4.5 km

- Till 2020 all 3D-Var experiments @SHMU (ZTD, Mode-S) have been run on AROME 2 km/L73 domain with CY40T1
- Early 2020: DA configurations for conventional observations (blending, bator, e002, e701, e131) have been ported/upgraded and validated for operational ALARO 4.5 km/L63 domain with CY43t2
- Reference = Alena's script on beaufix (many thanks!)
- Several local problems linked to the (old version of) gcc compiler on the IBM platform had been identified and solved in close collaboration with RC LACE ASC (Olda). Some of the fixes have been promoted for CY43t2bf11. OMP issue in shuffle still open.
- B-matrix downscaled ARPEGE EPS
- 3D-Var scripts were adapted for operational environment (run_app in perl) => milestone for SHMU 3D-Var

CY43T2bf10 BLENDVAR e-suite



GNSS slant total delays

- Phased from cy40h1 to cy43t2bf10
- Observation type (19) and observation (129) were added.
- Nonlinear, TL, AD observation operators were developed.
- Preliminary assimilation tests were performed.

Financed by RCLACE and C-SRNWP

X,Y,Z,T,PCV

Report available : http://www.rclace.eu/File/Data Assimilation/2019/repStay MImrisek STDphasing 2019.pdf

GNSS slant total delays: BATOR

201	90824	1 00											
17	19 11	11 48.7	51804 19.	151007	'BBYSSU	Τ_'	20190824	000000	448.183	1 1	1111	0	
129	165	.186112	64.17939	6 2.68	1502 1.0	03							
	NST	ГD			NCI	NLV	- number	of sla	nts/ROBOI	DY -s	NC	ISTD	
NGN	SS	1	LAT	LON	station	id	date	time	altitude	1	Flag	1	
	1	1	1			1		1	1	1	1	1	
17	19 11	11 48.7	51804 19.	151007	BBYSSU	T_ '	20190824	000000	448.183	1 1	1111	0	header
				satel1:	ite numb	er							
AST	Da	azimuth	elevatio	n	STD e	rror							
1		1		1	11	1							
129	165	186112	64.17939	6 2.68	1502 1.0	03							body

Listing 1: The example of OBSOUL.conv file

New fields added to BODY table:

- MDB_SATID_AT_BODY Satellite identifier, meant to be used for satellite blacklisting,
- MDB_AZIMUTH_AT_BODY Azimuth of satellite at GNSS station,
- MDB_ELEVATION_AT_BODY Elevation angle of satellite at GNSS station,
- MDB_REFCONST_AT_BODY Refractivity constant at GNSS station.
- MDB_PHI_AT_BODY geocentric angle between GNSS station and GNSS satellite.

GNSS slant total delays: SCREENING

The number of vertical profiles in model space is set by namelist variable NOBSPROFS:

```
1 &NAMNPROF
2 NOBSPROFS(19)=87,
3 /
```

- φ is the geocentric angle from GNSS station to satellite,
- Δφ_k s the difference of geocentric angles between two intersections of GNSS signal and model levels,
- h_{top} is the level closest to satellite where the signal is bent for the last time.

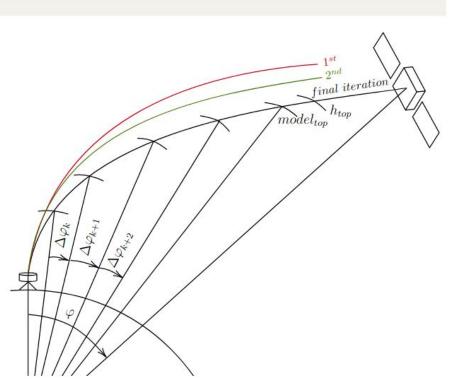
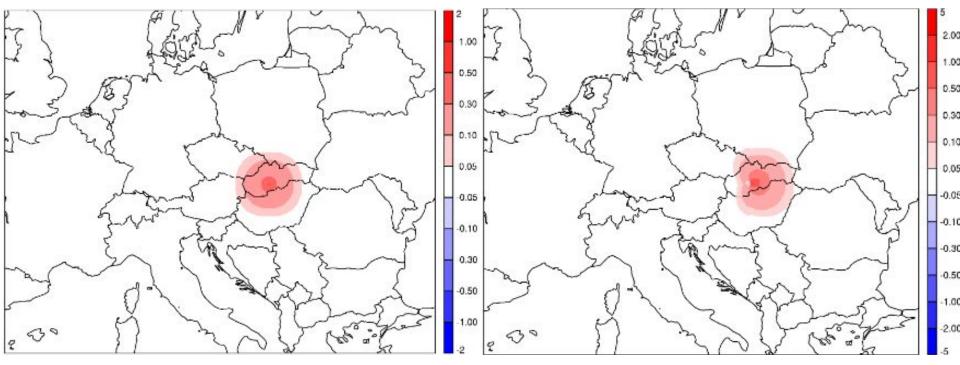


Figure 2: GNSS signal path.

GNSS slant total delays: MINIMISATION


It is mandatory to switch on the use of STD observations in J_o. This is done with NOTVAR variable in minimisation namelist:

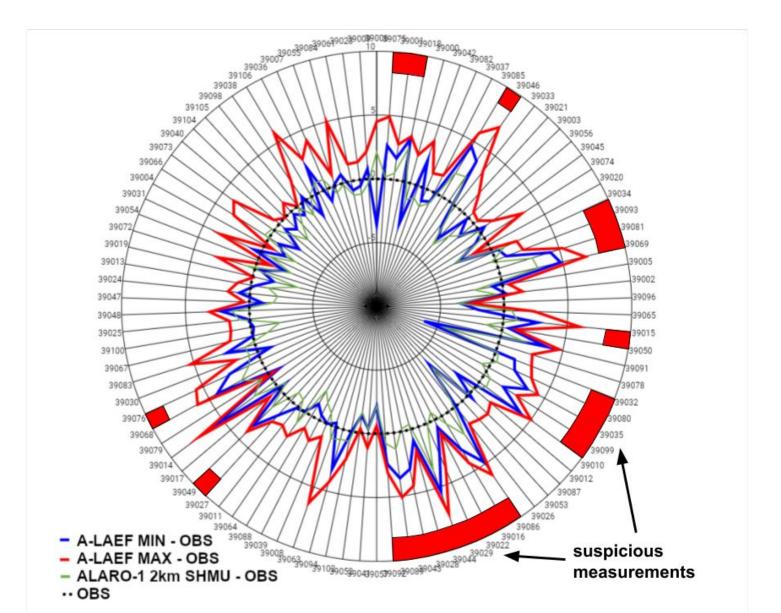
Listing 8: New NOTVAR variable in *fort.4* file for MINIMISATION

Increments of specific humidity of single STD assimilation:

Increments of specific humidity of all STDs assimilation:

GNSS slant total delays: Outlook

- Phase the actual version of the code to higher cycles gradually
- Perform more assimilation studies

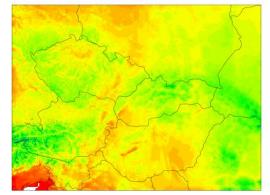

Local QC based on A-LAEF

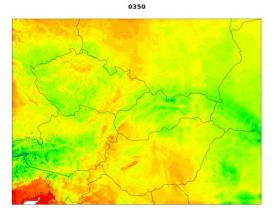
The experiences gained through INCA nowcasting and high resolution ALARO-1 reanalyses on 1-2 km grids led to a necessity of automatic quality control (QC). Without a proper QC, the automatic weather station (AWS) measurements often brought a spurious signal into the analysis.

A physically consistent spread of the meteorological fields provided by the A-LAEF ensemble was the main motivation for its use in an automatic QC procedure (in a new software level above MySQL database).

As a first attempt the QC of 2m temperature was tested at SHMU. The suspicious AWS measurements with values out of the A-LAEF spread were identified

Local QC based on A-LAEF

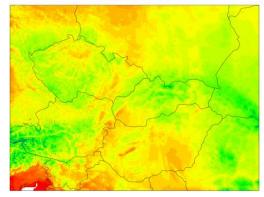

HighRes surface DA

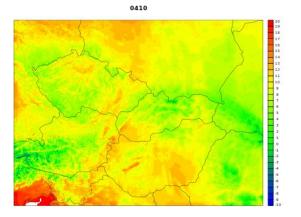

Hourly CANARI/MESCAN analyses (OPLACE + local AWS) were run to assess an impact of 10 minutes time difference in the observations from AWS (HH, 00 min) and SYNOP (HH-1, 50 min. in some countries).

Also, the 10 min gradient in temperature is being checked for potential use in observations QC

HighRes surface DA

CLSTEMPERATURE 2020/06/02 04:00 +0





m0400-m0350

CLSTEMPERATURE 2020/06/02 04:00 +0

m0400-m0410

Future plans

- Finishing the upgrade and validation of CY43t2bf11 for DF BLENDING + CANARI for operational ALARO (4.5 km/L63)
- Further validation and tuning of BLENDVAR for ALARO (4.5 km/L63)
- Start observation monitoring
- Resolution increase pending new HPC