Regional Cooperation for Limited Area Modeling in Central Europe

QC analysis of "new" observations

Antonín Bučánek, Alena Trojáková

Motivation

- to extend use of existing observations
- currently assimilated observations within 6h BlendVar:
 - SYNOP (Ps), TEMP (t, q, u, v), AMV,
 - AMDAR (t, u, v), Mode-S MRAR CZ (t, u, v), Mode-S EHS from KNMI (t, u, v)
 - SEVIRI (channels: 2,3)
- quality assessment of "new" data still ongoing
 - validation with respect to NWP model
 - 3 months period of 25 March 25 June 2019
 - cross-check with comparable (reference) observations, if available

- "new" observations (from OPLACE, except for Czech MRAR):
 - aircraft: AMDAR, Mode-S EHS (KNMI), Slovenian MRAR & Czech MRAR
 - wind profiler, high-resolution AMV (HRWIND), scatterometer
 - national synoptic observations
- validation with respect to NWP data
 - operational ALARO/CZ 2.3km forecast of various length (6-11h)
 - observations assimilated with +/-30min assimilation window
 - pragmatical decision to get data samples every hour

Figure 4: The scheme of the ALADIN/CHMI operational forecast used as the first guess for hourly analyses.

ARSO METEO

Slovenia

Czech MRAR observations

- quality of Mode-S aircraft data from modern air surveillance system reassessed
- good measurements selected based on 3 months statistics (March-June 2019) w.r.t. ALARO/CZ NWP model separately for each aircraft (whitelist) following Strajnar (2012)
- aircraft without BIAS & with STD comparable with other observations selected

var	number of obs	mean	std
temperature	3000	<1K	<2K
wind speed	3000	<1m/s	<5m/s
wind direction	3000	<10	<100

Table 1: Thresholds used to generate Czech MRAR whitelist of aircraft

Czech MRAR observations

CZ-MRAR wind speed

CZ-MRAR wind speed

SHMU

Slovenia

CZ-MRAR temperature

OMSZ

ARSO METEO

Slovenia

SHMU

ROMANIA

ZAMG

ANM

• small BIAS above 500hPa

ROMANIA

ZAMG

ANM

LACE-AMDAR temperature

CZ-MRAR temperature

ARSO METEO

Slovenia

SHM.

6

• not clean comparison - data samples covers different domains & AMDAR vs MRAR !

SI-AMDAR wind speed

O-G MEAN data1500 O-G STD data1500 O-G STD data3000 O-G MEAN data3000 N data1500 N data3000 8 80 8 8 G MEAN whitelete N whitelister N whitelister ĝ ĝ ĝ ĝ essure [hPa] sure [hPa] 600 800 000 600 Pres 80 88 88 88 80 8 8 8 0.0 0.5 -0.5 0.0 0.5 1.0 0.0 2.0 3.0 2000 3000 4000 -0.5 1.0 1.5 0 2 3 4 0 5000 15000 25000 35000 1.0 n 1000 1 Wind speed [m/s] Wind speed [m/s] Number Wind speed [m/s] Wind speed [m/s] Number

not clean comparison - AMDAR vs MRAR (over Slovenian air-space)

SI-MRAR wind speed

ARSO METEO

Slovenia

SHIMI

ROMANIA

ZAMG

ANM

SI-AMDAR temperature

SI-MRAR temperature

ARSO METEO

Slovenia

SHM.

6

• not clean comparison - AMDAR vs MRAR (over Slovenian air-space)

MRAR observations

- quality assessment of Mode-S aircraft data still ongoing
- temperature biases to be further investigated
 - might be caused by data sampling, e.g. domain, AMDAR vs MRAR, NWP model (6-11h forecast), phase of flight, aircraft type, ...
 - more strict criteria could be used ?
 - VarBC ?

- quality of wind profiler (WP) data investigated
- based on 3 months statistics (March-June 2019) w.r.t. NWP model for each station
- aim to define thresholds (MEAN & STD) for the blacklisting

var	number of obs	mean	std
wind speed	?	m/s</td <td><?m/s</td></td>	m/s</td
wind direction	?	</td <td><?</td></td>	</td

 Table 2: Thresholds used to generate blacklist of wind profiler stations

• WP station 11509 Doksany (CZ) compared with the closest TEMP station

wind speed

Overall OMG FF for the closest TEMP 11520 (54.9km)

wind direction

Overall OMG DD for 11509

very good agreement

• WP station 10394 Lindenberg (CZ) compared with the closest TEMP station

wind speed

wind direction

Wind profiler observations

• WP station 11038 Vienna (CZ) compared with the closest TEMP station

wind speed

Overall OMG FF for 11038

Overall OMG FF for the closest TEMP 11035 (23km)

wind direction

Overall OMG DD for 11038

• WP station 11038 Vienna (AT) compared with the closest TEMP station

wind speed

• a candidate for blacklisting

wind direction

- quality assessment of WP data still ongoing
 - thresholds (MEAN & STD) for the blacklisting to be defined
 - WP data (one BUFR file) contains several (up to 6 measurement within an hour)
 - data closest to analysis time to be checked
 - update mf_blacklist.b when appropriate:

```
if (OBSTYP = pilot) then
    if (PRESS < MODTOP) then fail(CONSTANT); endif; # <=1. dans cln
    ...
    if VARIAB in (u, v) then
        if (CODTYP = eu_profiler) then
            if (PRESS < 250.) or (PRESS > 850.) then fail(CONSTANT); endif;
        endif;
endif;
```


- Continue QC assessment & perform impact studies
- Investigate use of VarBC for aircraft temperature

Thank you for your attention !

Benedikt Strajnar. Validation of Mode-S Meteorological Routine Air Report aircraft observations. *Journal of Geophysical Research (Atmospheres)*, 117:23110–, 12 2012. doi: 10.1029/2012JD018315.

Operational Setup at CHMI

- ALARO NH-v1B cy43t2pt_op1:
 - domain: Ax 2.3km, 1069x853GP
 - 87 vertical levels, mean orography
 - time step 90s
 - 3h space consistency coupling ARPEGE synchronous
 - forecasts up to +72/+54h at 00, 06, 12 and 18 UTC
 - weak IDFI of short cut-off production analysis
- Upper air analysis BlendVar scheme
 - BlendVar = DF Blending (filter. at trunc. E102x81) followed by 3D-Var
 - 6h assim cycle, no IDFI in the next +6h assim guess
 - REDNMC=0.5, spin-up ensemble B matrix based on AEARP
 - $\pm 1.5h$ assim window, VARBC 24h cycling
 - Assimilated observations SYNOP (Ps), TEMP (t, q, u, v), AMDAR (t, u, v), AMV, SEVIRI (channels: 2, 3), Mode-S MRAR CZ (t, u, v), Mode-S EHS from KNMI (t, u, v)
 - SIGMAO_COEF=.67, SIGMAO_COEF(AMDAR)=2.8, SIGMAO_COEF(RADIANCE)=1.15
- Surface analysis OI based on SYNOP (T2m, RH2m)
 - SST from ARPEGE

