

Institute

Recent progress in HIRLAM upperair data assimilation

Roger Randriamampianina with contribution from HIRLAM colleagues

EWGLAM, 2019, Sofia, Bulgaria

- Operational upper air data assimilation (UA-DA) systems in HIRLAM
- Algorithmic development
- Improving the use of observations
- Concluding remarks and further plan

Operational upper air data assimilation (UA-DA) systems

- Assimilation scheme: 3D-VAR;
- Cycling Strategy: 3 hourly;
- Conventional observations: SYNOP, SHIP, BUOY, AMDAR, AIREP, ACARS, ModeS EHS, Pilots, TEMP;
- Satellite radiances: AMSU-A, AMSU-B/MHS, ATMS, IASI;
- Satellite retrievals: Scatterometer, GNSS ZTD, GPS RO, AMV;
- Radar observations: Reflectivity;
- Bias correction scheme: Variational (VarBC)
- Blacklisting of conventional observations: IFS decision

Hirlam

Progress with 4D-Var

N Gustafsson, J Barkmeijer, M Lindskog, J Bojarova

Experiments:

3dvez2d : 3D-Var, ez=11, LSM, Redzone = 120 km

- 4dvex2d : 4D-Var, ez=23, no LSM, 6x, 3x increments Redzone = 120 km
- 3dvnolsm : 3D-Var, ez=11, no LSM
- 4dvbigez : 4D-Var, ez=11 in model, ez=191/131 in minim. No LSM, 6x, 3x, Redzone = 10 km
- 4dvbigezMC : as 4dvbigez but with fresher LBCs in 03, 09

4D-Var and LBCs Nils Gustafsson

3D-Var: The analysis is influenced by observations all the way to the Lbs and the analysis is used as the first LBC

4D-Var: The TL increment is relaxed to zero in the forward run and the AD (dJ/dx) is also relaxed to zero. (+ forecast LBC in the middle of the window)

How to cure this? (1) Use the increment at the start of the window (analysis increment) as first LBC (quite simple)

(2) Control LBCs at the end of the window (requires one more control vector)

Single observation in 4D-Var

R. Azad, N. Gustafsson, J. Barmeijer, M. Mile

Many tested the 4D-Var scheme with single observation. Expected behaviour was found: good evolution of the increment.

Other development on algorithm ...

LETKF (*P. Escriba*): Further tuning of the scheme showed very promising results. Porting of the code to higher model version demands resources.

Hybrid and EnVar scheme (*J. Bojarova*): Further testing and tuning of scheme is needed. Similarly, here as well we need to port the code to higher model version.

Estimation of the background error statistics (*J. Bojarova, X. Yang*): Different techniques (downsc/EDA/Brand) were compared in frame of a reanalysis project (Copernicus Arctic Reanalysis project).

Accounting for large scale information(*J. Bojarova, M. Dahlbom*): Spectral blending vs Jk.

Nowcasting-related dev: From development to operational implementation and testing (MetCoOp and DMI). *R. Azad* (MET Norway), *E. Gregow, D. Schönach* (FMI), *X. Yang* (DMI)

Use of more observations in operational DA

Observations added since last EWGLAM meeting: – At Met Éireann (E Whelan): ASCAT, AMSU-A, MHS, IASI

– At KNMI:

– At AEMET (J Sanchez, M Diez): Radar RFL, RH2m and T2m

Alertness Better use of observations in DA Implementation of supermodding technique for ASCAT M Mile, PhD work

observation effective resolution < model effective resolution: superobbing observation effective resolution > model effective resolution: supermodding

- The task is to reduce the representativeness error in DA

 Case study: Applying the supermodding technique in ASCAT DA improves the forecast of wind speed and direction.
Paper on this work will be submitted soon...

IFS blacklisting decision in Harmonie-Arome DA (CY43)

- In Harmonie DA, we use an old-dated blacklisting file from Meteo France.
- Versions of the IFS blacklisting decision were used in OSEs and reanalysis systems.
- We receive regularly the updated list of blacklisted conventional observations (stations IDs with bad parameters/instruments).
- The implementation is not one-by-one, because we kept the selection of active observations as for ARPEGE/ALADIN/AROME DA. So, mainly the adopted solution concerns only the blacklisting of conventional observations.

Note the relatively short period.

Norwegian Meteorological

Norwegian Meteorologica Institute

Maybe interesting for you

- At MET Norway we will start the implementation of All-sky radiance assimilation soon.
- Assimilate surface pressure instead of geopotential (0 m).
- Per Dahlgren tested the DFI approach in Precise (Aladin 5.5 km) system
- Radiance assimilation: The RT coeffs were updated to use 54 levels (microwave) and 101 levels for IASI
- Implementation of MHWS-2 (FY satellite series) radiance in MetCoOp
- In CY43 we have the ODB_IO_METHOD=4 instead of ODB_IO_METHOD=1

Potential for cooperation

Norweaian

Norwegian MeteorologicaPInstitute

Meteorological

- High-resolution radiosonde assimilation (both ascent and descent data)
- AMDAR Humidity assimilation
- SAPP package

Alertness Relative impact of observations in LAM

In frame of the Alertness project we studied the impact of Arctic observations in AROME- Arctic model

System setup: (Harmonie cycle 40h1.1.1)

- -- AROME-Arctic
- -- Model level definition: 65 level
- -- Horizontal resolution 2.5 km
- -- Non-hydrostatic dynamic
- -- Physical parametrization: Harmonie-AROME
- -- Data assimilation: 3D-VAR

OI for surface

- -- 3-hourly cycling
- -- Lateral boundary conditions: ECMWF
- -- Observations: Conventional, satellite
- -- Satellite: AMSU-A, MHS, IASI, Scatterometer (L2), AMV
- -- Blacklist of conventional observations: IFS decision
- -- Large scale information taken into account using spectral mixing between first-guess and LBC

OSE experiments in Alertness

Alertness **task 2.5**: In frame of the **APPLICATE** project ECMWF is running OSE experiments and sharing with us the results to be used as lateral boundary conditions (LBCs). They performed two series of OSE: with global and Arctic (lat >= 60) observations denial.

Scenarios: (1)Global control (2)Global Arctic denial (3)Global denial 4) LAM control (5) LAM denial LBC1 LBC2 LBC3

Relative impact of observations:Case 1: LBC1 + (4)vsLBC1 + (5)=> impact of obs in LAMCase 2: LBC1 + (5)vsLBC2/LBC3+ (5)=> impact of obs through LBC in LAMCase 3: Global vsArctic denial=> impact of non-Arctic observations in Arctic (LAM)NWP

BUT: LBC1 + (4) vs LBC2/LBC3 + (5) shows the real impact of observations

Global study: Bormann et al. 2019; Arctic study: Lawrence et al. 2019

LBCs and the performed experiments

Observations	impact through LAM DA	impact through LBC	real impact	impact of non- Arctic observation	Underlined "yes" means	
All microwave satellite radiances	<u>yes</u>	<u>yes</u>	<u>yes</u>	yes	checked for both	SOP periods
All microwave temperature sensitive radiances	yes	yes	yes		LBC2: Arctic denial experiments	LBC3: Global denial experiments
All microwave	yes	yes	yes		All microwave satellite radiances	All microwave satellite radiances
humidity sensitive radiances					All microwave temperature sensitive radiances	
All infrared satellite radiances	yes	yes	yes		All microwave humidity sensitive radiances	
All atmospheric motion vectors (AMV)	yes				All infrared satellite radiances	All infrared satellite radiances
All conventional observations	<u>yes</u>	<u>yes</u>	<u>yes</u>		All atmospheric motion vectors (AMV)	
All radiosonde observations	yes	yes	yes		All conventional observations	All conventional observations
All surface	yes				All radiosonde observations	
pressure observations					All surface pressure observations	
All SOP1 observations	yes				All SOP1 observations	

Real impact of microwave radiances in system with and without large scale mixing

Norwegian Meteorological Norwegian Meteorological

Relative impact of conventional obs. on AROME-Arctic forecasts in a system with large scale mixing

Norwegian Meteorological Norwegian Meteorological

Relative impact of microwave humidity sensitive radiance on AROME-Arctic forecasts in a system with large scale mixing

Observations are lost in both global and regional models

SOP1						
Temperature	Wind speed	Relative humidity	Geopotential height			
All conventional IR, MW	All conventional IR MW	All conventional MW IR	All conventional IR, MW			

Observations are lost in regional model

SOP1					
Temperature Wind speed		Relative humidity	Geopotential height		
All conventional IR, MW AMV	All conventional IR Up. Tr: AMV MW Lo. Tr: MW AMV	All conventional AMV, MW IR	All conventional Up. Tr: AMV, IR (d2) MW Lo. Tr.: MW AMV, IR (d1)		
		SOP2			
All conventional IR, MW, AMV	All conventional IR AMV MW	All conventional AMV, MW IR	All conventional AMV IR, MW		

Many to say about the results, but as example ...

Surface parameters: using both 00 and 12 UTC runs during SOP1 period							
	Surface pressure			2m temperature			
Da	ay-1	Day-2	0 - 12 hours	12 - 24 hours	Day-2		
RS, MW, Z IR, 1	MCV V, PS MMW, MRS AMV MIR,MT SIN	MCV MRS AMV MIR IR, MMW, S1N RS, CV MW MT, MH	MCV CV PS MRS RS MW, MMW IR, MIR, SIN MT, MH AMV	MCV CV MRS PS, MW, MMW IR, MIR RS, S1N AMV MT, MH	MCV, CV MRS, MW IR, SIN MIR, RS, PS MMW, AMV MT, MH		
2	2m relative humidi	ty	2n	2m Specific humidity			
Da	ay-1	Day-2	Day	Day-1			
MM MI IR SIN Y	MH W, MW RS, RS MT . MIR J, AMV MCV CV PS	MRS, MT MH, MIR, MCV MW IR, S1N, RS, AMV CV PS	MCV CV MRS MMW, MW, MT, SIN, MIR, IR,	MCV CV MRS MMW, MH, RS MT, SIN, AMV MIR, IR, PS			
	10m Wind speed			Total cloud cover			
0 - 12 hours	12 - 24 hours	Day-2	0 - 12 hours	12 - 24 hours	Day-2		
MCV CV RS, MRS MT, MH AMV, SIN, MMW IR, MIR PS, MW	MCV MT MH MW, MMW MIR, CV, RS, MRS AMV SIN, IR S	MT, MH, MMW MW, MCV, AMV MIR, RS S1N, PS, IR MRS, CV	MCV CV PS, RS, MH, MT MRS, MW MMW, AMV MIR S1N IR	MCV MMW MRS, AMV MT, RS IR MIR MIR MH, MW S1N, CV, PS	MCV MMW MRS, AMV MW, MT, S1N CV, PS MH, IR, MIR, RS		
LAM DA is import to get accurate forecasts of surface wind speed							

Concluding remarks and outlook

- Continue the local implementation of more observations. This depends on the willingness of the local team, but needs also help from experts. So, it's common task...
- I hope to have 4D-VAR in operational soon

. . . .

 The Harmonie-Arome is already an ensemble system. I hope to have it tuned to use the different recently (or planned) developed DA elements (nowcasting, LETKF and hybrid EnVar schemes)

Thank you

