Radiance bias correction in the ALADIN-CZ: comparison of different VarBC configurations

Patrik Benáček

The Czech hydrometeorologic Institute

September 19, 2018

Patrik Benáček (CHMI)

Radiance bias correction in ALADIN-CZ

September 19, 2018 1 / 16

Motivation

- 2 The VarBC scheme
- 3 VarBC-LAM adaptivity approaches

4 Results

Motivation

- $\bullet\,$ random, zero-mean, Gaussian errors of observations y and the model background x_b (3D-VAR assumptions),
- bias detection: based on a sample of observation increments $\delta y = y h(x)$,
- *bias prediction/correction*: Variational Bias Correction (VarBC) scheme based on a multiple linear regression and implemented into the 3D-VAR scheme:

$$f(\mathbf{x},\boldsymbol{\beta}) = \sum_{k=0}^{N_p-1} \beta_k p_k(\mathbf{x}).$$

The bias coefficients β are:

- adopted from a global NWP model (VarBC-global):
 - the same set of predictors p_k (\checkmark),
 - differences between observation biases in regional and global models are not large (†),
- estimated/cycled in regional models (VarBC-LAM):
 - data sample issues.

VarBC-LAM: data sample issues

The accuracy of β strongly depends on a miscellaneous data sample obtained under different:

- meteorological conditions (the spatially/serially correlated data sample in LAMs),
- satellite scan-positions (the non-uniform data sample in LAMs).

MetOp-B/AMSU-A/channel 9

Figure : The non-uniform polar-satellite data sample in the ALADIN-CZ assimilation cycle.

VarBC-LAM: data sample issues

The accuracy of eta strongly depends on a miscellaneous data sample obtained under different:

- meteorological conditions (the spatially/serially correlated data sample in LAMs),
- satellite scan-positions (the non-uniform data sample in LAMs).

MetOp-B/AMSU-A/channel 9

Figure : The non-uniform polar-satellite data sample in the ALADIN-CZ assimilation cycle.

m eta are estimated within the 3D-VAR data assimilation scheme:

$$J(\mathbf{x},\beta) = (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^{T} \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + (\mathbf{y} - h(\mathbf{x},\beta))^{T} \mathbf{R}^{-1} (\mathbf{y} - h(\mathbf{x},\beta)), + (\beta - \beta_{\mathbf{b}})^{T} \mathbf{B}_{\beta}^{-1} (\beta - \beta_{\mathbf{b}})$$

Assuming *m*-observations, *p*-predictors, $\mathbf{x} = \mathbf{x}_b$, $\mathbf{B}_{\beta} = diag(\sigma_{\beta_1}, \dots, \sigma_{\beta_p})$ and $\sigma_{\beta}^2 = \frac{\sigma_o^2}{N_{bg}}$, optimal β are estimated by minimizing:

$$\min_{\boldsymbol{\beta}} J(\boldsymbol{\beta}) = \min_{\boldsymbol{\beta}} \left(\frac{1}{2\sigma_o^2} \sum_{i=1}^m [\delta y - f(\boldsymbol{\beta})]^2 + \frac{N_{bg}}{2\sigma_o^2} \sum_{j=0}^p (\beta_j - \beta_j^b)^2 \right)$$
(1)

Regularization term (J_{β}) penalizes large changes of β from β_b . Regularization parameter (N_{bg}) determines the VarBC adaptivity.

The VarBC demonstration: toy model

Let's assume β (p = 3) associated with scan-angle predictors (θ , θ^2 , θ^3):

$$f(\boldsymbol{\beta}) = \beta_0 + \beta_1 \theta + \beta_2 \theta^2 + \beta_3 \theta^3.$$

Minimizing the cost function in (1):

Figure : Illustration of the VarBC application for the scan-angle bias correction using β_b (red) and β with regularization terms $N_{bg} = 0$ (final $N_{bg} = m$ (green). The toy model is based on GD-method: m = 24, m = 24, m = 4, ter = 50, $\alpha = 0.1$

Radiance bias correction in ALADIN-CZ

The VarBC demonstration: toy model

Let's assume β (p = 3) associated with scan-angle predictors (θ , θ^2 , θ^3):

$$f(\boldsymbol{\beta}) = \beta_0 + \beta_1 \theta + \beta_2 \theta^2 + \beta_3 \theta^3.$$

Minimizing the cost function in (1):

N _{bg}	β	$J(\beta)$
-	$(0.0, 0.0, 0.0, 1.0) \leftarrow m{eta}_b$	3.0
0	(0.1, -0.2, 1.0, 0.1)	0.3
m	(0.1, -0.1, 0.2, 0.8)	1.9

 N_{bg} determines an adaptivity of β :

- $N_{bg} \gg m$ (less adaptive)
- $N_{bg} \ll m$ (more adaptive)

•
$$N_{bg} = m$$
 (a half weight of β_b)

Figure : Illustration of the VarBC application for the scan-angle bias correction using β_b (red) and β with regularization terms $N_{bg} = 0$ (see a) $N_{bg} = m$ (green). The toy model is based on GD-method: m = 24, m = 24,

Radiance bias correction in ALADIN-CZ

Exp	Parameter N _{bg}	Reference
NBG5000	5000	AROME-MF
NBG2000	2000	HIRLAM (Lindskog et al. (2012))
CAM	$max(m_{avg}, N_{min})\left(2^{rac{1}{n_h}}-1 ight)^{-1}$	Met-Office (Cameron and Bell (2016))
NEW	$max(m_{avg}, N_{min})2n \left[W\left(rac{4n^2\sigma_o^2}{var(b_o)} ight) ight]^{-1}$	ALADIN-CZ (Benacek and Mate (2018))

m _{avg}	 expected #observations at analysis time
n _h	 #analysis steps to reduce half-bias
n	 #analysis steps to reduce bias
var(b _o)	 time-variance of the mean observation bias (model error constraint)
σ_o	 observation error (instrument error constraint)

Regularization term for MHS/channel-5 on MetOp-B in ALADIN-CZ ($m_{avg} = 250$).

Exp	N _{bg}	β	n[days]
NBG5000	20m _{avg}	β	-
NBG2000	8m _{avg}	β	-
CAM	7 mavg	β	$10(2n_h)$
NEW	3m _{avg}	β_0	10
NEW	21 m _{avg}	$\beta_{1,\ldots,p}$	30

VarBC-LAM adaptivity approaches: comparison

Regularization term for MHS/channel-5 on MetOp-B in ALADIN-CZ ($m_{avg} = 250$).

Exp	N _{bg}	β	n[days]
NBG5000	20m _{avg}	β	-
NBG2000	8m _{avg}	β	-
CAM	7 mavg	β	$10(2n_h)$
NEW	3m _{avg}	β_0	10
NEW	21m _{avg}	$\beta_{1,\ldots,p}$	30

Figure : Artificial bias correction (constant bias-offset of σ_o) after 15-day spin-up period with regards to m_{avg} . Performance of different VarBC approaches is represented by a moving average line.

VarBC initialization

- VarBC-LAM: 24-hour cycling; 45-days initalization (passive DA, warmstart)
- VarBC-global (ARP100): β from ARPEGE; no initialization

Figure : Mean bias coefficients for particular AMSU-A channels estimated after the initialization period for different VarBC-LAM methods and for VarBC-global as a reference. The mean bias coefficients are evaluated from 1 to 31 Dec 2015. Error bars represent the standard error of the mean of bias coefficients.

Quality of the model background

Figure : Evaluation of a quality of the analysis/first-guess in assimilation cycle for different VarBC-LAM methods and VarBC-global (reference) with N_{min} set to 100. Vertical profile of relative RMS (left) and BIAS (middle) scores of OMA and OMG differences are evaluated with respect to TEMP-T (temperature) based on 3-hour analysis cycle from 01 Dec 2015 to 31 Jan 2016. Dots represent statistically significant differences on the 95% confidence level with respect to the reference. The number of observations is presented in bar plots (right).

- ∢ ⊢⊒ →

Quality of analysis: VarBC overfitting

MetOp-B/MHS

Figure : As Fig. 5 but with respect to the instruments MHS on MetOp-B.

Scan-angle bias correction quality

Figure : The scan-angle bias correction using different VarBC-LAM methods and VarBC-global as a reference represented by moving average lines. A position of the satellite scan is represented by Field-Of-View (FOV). The bias correction is shown for the IASI channel 267 on MetOp-B for a particular day on 26 Dec 2015 at 21 UTC.

Forecast impact study: no instrument bias changes

Figure : Vertical profile of relative RMSE using VarBC-LAM methods NBG5000, NBG2000, NEW100 and VarBC-global ARP100 as a reference. The scores are evaluated with respect to combined AMDAR+TEMP observations during the validated period. Dots represent statistically significant differences on the 95% confidence level.

Artificial bias correction quality

Figure : Reaction of different VarBC-LAM methods on artificially biased AMSU-A channel 6 on NOAA-19 (0.1 K) monitored by the time-evolution of mean OMG values. The length of spin-up period is evaluated with regards to particular analysis time on (top), 03 (middle) and 12 UTC (bottom) during a one-month spin-up period. Bar plots represent the number of observations used in the DA-system.

- the VarBC-global may not be consistent with LAM conditions:
 - global-offset/air-mass (†),
 - geometric correction (\checkmark),
- VarBC-global: a small degradation of the background/analysis and the short-range forecast,
- the VarBC-LAM configurations:
 - NBG2000, CAM (overfitting problem),
 - NBG5000 (underfitting problem),
 - CAM/NEW allow assimilation of small data samples (\geq 50 obs):
 - small improvment of BIAS for the RH profile,
 - adjusting β to instrument bias changes on a short-time scale.

Thank you for your attention.

