

Norwegian Meteorological Institute

Offline SURFEX forcing and output interface

Trygve Aspelien

18.09.2017

Offline/inline environment

- https//svn.hirlam.org/branches/harmonie-40h1.2_EKF/
 - util/offline
 - util/offline/src
 - ASSIM -> ../../.src/surfex/ASSIM
 - FORC -> ../../forcing/FORC
 - MSE -> ../../.src/mse/programs (*)
 - OFFLIN -> ../../.src/surfex/OFFLIN
 - SURFEX -> ../../.src/surfex/SURFEX
 - Makefile.SURFEX.mk (*)
 - (*) Extra «project» compared to pure offline

Forcing and surfex tools

- Python project on github (still under development)
 - https://github.com/metno/offline-surfex-forcing
- Forcing generation (similar to shell+fortran tool in trunk at the moment)
 - Arbitrary input and format for each Surfex variable
 - Full user flexibility based on configuration files (YAML)
 - Model forcing from NetCDF files
 - Points are tested
 - Grib not yet implemented
 - FA/lfi not implemented. Should use epygram libary for IO.
- Plotting
 - Python framework for reading different gridtypes, project them to a map and plotting.
 - ASCII
 - ASCII/OFFLIN/NetCDF/TEXTE together with a PGD file

Snow map

- Defined a new IGN grid with MetCoOp projection parameters
 - \sim 50 000 points vs \sim 0.7 mill points or more with new domain

Norwegian Meteorological Nostitute

Norwegian Meteorological Institute

CANARI (assimilation) and SURFEX

Trygve Aspelien

17.09.2017

Motivation

- The analysis in CANARI is only reading atmosphere file
 - - OK, for grid average of T2M, RH2M and SWE because the first guess is the same in atmosphere file and SURFEX file
 - Needs communication of these variables in apl_aome/aplpar during forecast
 - - assimilating SWE and not snow depth
 - observations are converted to SWE based on climatological density values
 - - no patch information
- apl_arome/aplpar are also used in the forecast but only relevant values are synchronized
- Mismatch in upper air field time step 0 and SURFEX time 0 (in reality after one time step)

- Tested technically OK
 - Still needs the SURFEX fields in buffer
 - GOTO SURFEX(BLOCK,LOGICAL)
 - Read SURFEX variable
 - Must be in MSE project due to interoperability with other external partners

At least 3 possibilities

- General solution:
 - create a new setup module (su_surf_flds_sfx)
 - extend pointers to surface_field_mix
- Extend output
 - - Make sure to write field to upper air output
 - - Read this new output in setup into a new variable/pointer
- Dirty hack for snow depth
 - Modify SWE to new snow depth in input file for CANARI
 - - read it as before for SWE
 - Skip converting snow depth to SWE for observations in ODB

- CNT0
 - SU_SURF_FLDS

Set up surface fields from surface_fields_mix

- CAN1
 - CANARI
 - SUGOMS
 - CAMELO
 - CALICO
 - CANACO(1)
 - STEPO
 - SCAN2M

COBSALL

COBS

GP_MODEL

CAPOTX

• OBSV

TASKOB

HOP

PREINTS

- PPOBSN # Obs operator for snow
- CAIDCU # Analyis

• CANACO(2)

Climatological snow densities
Step control
Inside NPROMA loop
Use fields read in setup
CANARI exits right away, no physics called
First guess
JO computation

Loop all observations

Future

- CANARI, does it have a future?
 - + uses ODB
 - + parallel environment
 - - CANARI will never be used offline
 - - Must be adapted to patches
- Gridpp is open source
 - + will soon get OI, used in MET-Norway PP
 - + Could be used also in offline environment
 - - Need ODB interface
 - - Parallelization not fully implemented
- ECMWF surface analysis
 - + uses ODB
 - + parallell environment
 - - Not SURFEX adapted (patches)
 - - Can it be used offline?