Regional Cooperation for Limited Area Modeling in Central Europe

Comparison of NWP based nowcasting (AROME) with classical system

Preliminary results

Mirela Pietrisi, Christoph Wittmann, Florian Meier

Model Evaluation Tools (MET)

Goal

- to assess the AROME Nowcasting system skills to accurately predict the precipitation field
- Comparison of AROME Nowcasting vs INCA forecast
 yee can't expect AROME Nowcasting to outperform INCA forecast in the first 1-2 forecast hours, but the aim is to know when AROME starts to has more skill than INCA

MET (Model Evaluation Tools)

developed at NCAR, maintained and enhanced by the Developmental Testbed Center (http://www.dtcenter.org/)

Compilation of the MET tools

External libraries

- netcdf library (if the versions V4.4.x are used then the libraries shoud be compiled with disable-netcdf-4 option)
- ➢ GSL library (GSL-1.11)
- NCEP's BUFRLIB (MET is not compatible with the last version, V11.0.0, therefore the used version is V10.2.3)
- Cairo and FreeType libraries (for building MODE-Graphics tool)
- copygb utility for regriding GRIB data
- ➢ wgrib and wgrib2

In addition

 to enable grib2 files - the NCEP's GRIB2 C-Library compiled with JASPER, PNG and Z libraries

Short description of MET package

(http://www.dtcenter.org)

- Point-Stat matches gridded forecast to point observations and supports several interpolation options
- Grid-Stat matches gridded forecast to gridded analysis field
- Series-Analysis perform a grid-to-grid comparison over a series of fields, most commonly a time-series
- Ensemble-Stat compare an ensemble of gridded forecasts to point and/or gridded observations
- MODE perform an object-based verification approach to a gridded forecast and gridded analysis field
- Wavelet-Stat spatial decomposition method to investigate how forecast errors varies with the lenght scale (apply an intensity-scale decomposition verification approach to a gridded forecast and gridded analysis field)

ARSO METEO

1. The INCA analysis files transformation

conversion from text-based data files into netCDF format

- NCAR Command Language (NCL), V6.1.2 software (<u>https://www.ncl.ucar.edu</u>) $\leftarrow \rightarrow$ asciiread was used to read the hourly ASCII files (the 15 min precipitation files were hourly cumulated) into CF-compliant netCDF

Cressman interpolation method

interpolated into AROME grid using the built-in function obj anal ic

Files transformation

2. The INCA forecast files transformation

➢ files are written in GRIB2 format, Lambert native projection

MET is not supporting this projection

- files transformed in a regular latitude-longitude projection.
 - Grib_api tools some keys were unrecognized
 - CDO (Climate Data Operators) tool

The masking verification region

Gen-Vx-Mask tool - to define the bitmapped masking region using as input a gridded model (AROME model) and one ASCII file.

longitude (degrees_east)

Grid-Stat tool - the computation of statistics

> traditional and spatial verification (neighborhood methods)

to avoid the double penalty problem, new spatial methods are used, as Fractions Skill Score - FSS (Roberts, 2008, Mittermaier et al, 2013).

$$FSS = 1 - \frac{FBS}{FBS_{worst}}$$

$$FBS = \frac{1}{N} \sum_{i=1}^{N} (O_i - F_i)^2$$

$$FBS_{worst} = \frac{1}{N} \left[\sum_{i=1}^{N} O_i^2 + \sum_{i=1}^{N} F_i^2 \right]$$

- Fractions Brier Score

 O_i and F_i - observed and forecast fractions

- reference that gives the largest possible FBS that could be obtained from the observed and forecast fractions

- Roberts, 2008: Assessing the spatial an temporal variation in the skill of precipitation forecasts from an NWP model

Grid-Stat tool - the computation of statistics

Fractions Skill Score - FSS (Roberts and Lean, 2007)

Two stages:

- a square neighborhood of a particular size is defined as 1x1, 3x3 ,5x5, 7x7, 9x9, 11x11 pixels centered around each pixel (Mittermaier, Roberts and Thompson, 2013)
- the fractions of occurrence of 1h rainfall accumulations with different neighborhoods sizes (width) are computed for the forecasts and observations and then these fractions are compared
- the computation of FSS by applying bootstrap method is costly
- Thresh >=0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32 l/mp

Preliminary results: July 2016 FSS - INCA forecast, THS >= 0.1 mm/h

- INCA has the highest skill in the two forecast first hours
- in the afternoon convections when starts to be active the skill is longer lasting than before midday
- > the best forecasts for INCA: 16-17 UTC in the afternoon (peak convection of in summer).
- \succ also, the best skill: 15 UTC + 1hr, 14 UTC + 2hr, 13 UTC + 3 hour, 12 UTC + 4 hour

Forecast range(hours-1)

0.18

0.16

0 14

0.12

0

2 3 4 5 6 7

9 10 11

0

2

3

4

5

6 7 8

Forecast range(hours-1)

9 10 11

8

0.18

0.16

0.14

0.12

Slovenia

3

4 5

1 2

9 10 11

7

8

6

Forecast range(hours-1)

0.18

0.16

0 14

0.12

10

Preliminary results: July 2016 FSS difference INCA_FCST – AROME 2.5, THS >= 0.1 mm/h Hourly precipitation

INCA has no skill to predict the evolution of cells after 1-2 hours lead time

Preliminary results: July 2016

FSS difference INCA_FCST – AROME 2.5, THS >= 1 mm/h Hourly precipitation

ARSO METEO Slovenia

6

12

Preliminary results: July 2016

FSS difference INCA_FCST – AROME 2.5, THS >= 2 mm/h Hourly precipitation

ARSO METEO

Slovenia

6

Conclusions

- AROME RUC results are preliminary
- the FSS approach can be used to evaluate the spatial and temporal variation in skill of both nowcasting systems (how the forecast skill varies with the neighborhood size)
- \succ this verification approach can provide the scales where the data assimilation techniques adds most of the information (the benefits of data assimilation)

Thank you for your attention!

ARSO METEO Slovenia

