Latest results of variational bias correction in LAM DA systems

Patrik Benáček (CHMI) Máté Mile (HMS)

DAWD, Ljubljana 19.9.2017

Bias correction scheme is essential for a satellite data assimilation into NWP models.

Bias correction scheme is essential for a satellite data assimilation into NWP models.

Bias correction scheme is essential for a satellite data assimilation into NWP models.

This presentation introduces a behavior of the VarBC scheme in LAMs and suggests a new adaptivity setting.

The VarBC scheme and a new adaptivity setting

Evaluation of bias correction

Satellite bias detection is statistically meaningful provided normally distributed random sample of observations.

OmG of AMSU-A channel 9 for a particular day

Satellite bias detection is statistically meaningful provided normally distributed random sample of observations.

OmG of AMSU-A channel 9 for a particular day

Satellite bias detection is statistically meaningful provided normally distributed random sample of observations.

OmG of AMSU-A channel 9 for a particular day

The observation sample is non-uniform, spatially and time dependent in LAMs.

The observation sample is non-uniform, spatially and time dependent in LAMs.

Two possibilities how to detected a meaningful satellite bias:1) gathering the data over a long-time (the offline method)2) cycling satellite bias information in time (the VarBC method)

Sampling variance of the observation bias is negligible in a global model but inflated in LAMs because of the spatially dependent observation sample.

The inflation factor V corresponds to a contribution of NWP model biases:

$$V = \sqrt{\frac{N_{avg}}{\sigma_o^2} \frac{1}{n} \sum_{i=1}^n (b_{o_i} - \overline{b_o})^2},$$

This presentation introduces a behavior of the VarBC scheme in LAMs and suggests a new adaptivity setting.

Sampling issues in LAMs

The VarBC scheme and a new adaptivity setting

pred0 - pred1 - pred2 - pred8 - pred9 - pred10

0.0 -

Evaluation of bias correction

The VarBC scheme advantages: maintenance, an adaptive bias correction WRT time, observation, analysis.

The VarBC scheme implementation:

$$J(\mathbf{x}, \boldsymbol{\beta}) = (\mathbf{x} - \mathbf{x}_{\mathbf{b}})^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_{\mathbf{b}}) + (\boldsymbol{\beta} - \boldsymbol{\beta}_{\mathbf{b}})^T \mathbf{B}_{\boldsymbol{\beta}}^{-1} (\boldsymbol{\beta} - \boldsymbol{\beta}_{\mathbf{b}}) + (\mathbf{y} - h(\mathbf{x}, \boldsymbol{\beta}))^T \mathbf{R}^{-1} (\mathbf{y} - h(\mathbf{x}, \boldsymbol{\beta})),$$

 $\boldsymbol{\beta}_{b}$... background bias parameters

 $B_{\boldsymbol{\beta}}$... background bias parameter error covariance matrix

Diagonal B_β with elements:
$$\sigma_{\beta_b}^2 = \frac{\sigma_o^2}{N_{bg}} \longrightarrow \sigma_{\beta_b}^2 = \frac{\sigma_o^2}{N_{bg}V^2}$$

N_{bg} ... stiffness parameter (5000) ~ adaptivity of VarBC
How set optimal stiffness parameters in LAMs ??

The optimum adaptivity of the VarBC is a trade-off between the variance and bias of bias parameters.

The concept of a variance-bias trade-off

$$MSE(\beta_n) = var(\beta_n) + bias(\beta_{best}, \beta_n)^2$$

The optimum adaptivity of VarBC is a trade-off between the variance and bias of bias parameters.

The concept of a variance-bias trade-off $MSE(R) \rightarrow L^{1} = (R - R)$

$$MSE(\beta_n) = var(\beta_n) + bias(\beta_{best}, \beta_n)^2$$

$$bias(\beta_{best}, \beta_n) = \beta_{best} \left(\frac{N_{bg}}{N_{bg} + N}\right)^n$$
$$var(\beta_n) = var(\beta_{best}) \left[1 - \left(\frac{N_{bg}}{N_{bg} + N}\right)\right]$$

2

Optimum N_{bg} is estimated by minimizing the MSE: $\frac{dMSE}{dN_{bg}} = 0$

The optimum adaptivity of VarBC is estimated by minimizing of the MSE of bias parameters.

$$\mathbf{N_{bg}} \simeq max(\mathbf{N_{avg}}, N_{min}) \underbrace{\left[2nW\left(\frac{4\mathbf{N_{avg}}n^2b_{max}^2}{\mathbf{V^2\sigma_0^2}}\right)^{-1}\right]}_{\mathbf{K}}$$

W	the Lambert-W function (non-complex)
N _{min}	the minimum number of observation
b _{max}	the maximum observation bias
n	the length of spin-up period
К	a stiffness parameter inflation factor

Estimating of K for the ATOVS in the LAM model Aladin-CZ.

			passive		active			
Instrument	σ_o [K]	V	Navg	<i>K</i> ₃₀	$N_{bg}[imes 10^3]$	Navg	<i>K</i> ₁₂₀	<i>K</i> ₁₀
AMSUA-5	0.25	4	380	6	2	60	20	3
AMSUA-6	0.18	4	460	6	3	70	20	3
AMSUA-7	0.22	4	480	6	3	75	20	3
AMSUA-8	0.22	4	920	6	6	130	20	3
AMSUA-9	0.22	6	920	6	6	130	20	3
AMSUA-10	0.26	9	920	7	6	130	20	3
AMSUA-11	0.30	14	920	8	7	130	30	5
AMSUA-12	0.66	16	920	10	9	130	40	8
AMSUA-13	1.44	22	910	14	13	130	50	15
MHS-3	3.0	6	6970	9	63	570	30	7
MHS-4	2.5	6	6690	8	54	540	30	7
MHS-5	2.0	11	6460	9	58	520	30	7

The factor V is estimated based on the period in October 2015. The remaining parameters are set to $b_{max} = 0.3 \text{ K}$, $N_{min} = 100$ and n = 10, 30 and 120 days.

This presentation introduces a behavior of the VarBC scheme in LAMs and suggests a new adaptivity setting.

Sampling issues in LAMs

The VarBC scheme and a new adaptivity setting

The setting of evaluation

Model

The LAM Aladin-CZ with 3D-Var upper-air DA at 9 UTC only; the ATOVS on MetOp-A and -B

Period	Training (spin-up):	September 2015		
	Testing:	October 2015		

Passive DA experiments

Method	Description	N _{bg}
Global	Raw global β	
Global-RS	Global $\boldsymbol{\beta}$ adopted to LAM at each analysis time	5000
Cold	Initial β set to zero	5000
Cold-ML	Tuned cold proposed by Lindskog et al. (2012)	2500
Warm	Initial global β + cycling β in LAM	5000
New	Initial global β + cycling β in LAM	new formulation
НК	Offline method based on Harris & Kelly (2001)	

Active DA experiments

Warm_ACT70default N
bg set to 5000New_ACT70new formulation

Initialization of VarBC: coldstart methods require excessive spin-up period to initialize bias dependencies for particular AMSU-A channels.

Initialization of VarBC: the new adaptivity formulation is able to reduce a contribution of NWP model biases.

The coldstart and global-RS methods provide worse quality of bias correction (MSE) than the warmstart and new methods.

The initialization methods based on global bias parameters provide a better satellite scan-angle bias correction.

The initialization methods based on global bias parameters provide a better air-mass bias correction.

In active DA, the default setting of stiffness parameter has too slow response to satellite bias changes for particular AMSU-A channels.

The VarBC response to an artificial bias (0.3 K) during October 2015.

Summary

- VarBC advantages: a maintenance, an adaptive bias correction
 WRT time, analysis and available observations.
- Initialization of VarBC:
 - use global-RS if observation bias differences between global and LAM models are not large,
 - > use warmstart instead of the coldstart methods,
 - → use the new formulation of N_{bg} to estimate the adaptivity of VarBC → especially for the active data assimilation!!
- Preliminary results on RC-LACE webpage:
 - Mate Mile, Patrik Benacek, 2016: Comparison of different VARBC initialization approaches
- Latest results submitted manuscript to the MWR journal:
 - in a peer review process (08/2017)

Future plans

- Forecast impact studies
- > How to deal with marginal data coverage
- > Testing 6h/24h cycling
- Summarize the up to now results concerning:
 - channel selection (IASI, ATOVS, SEVIRI),
 - VarBC scheme,
 - thinning distance,
 - > observation error setting.

Thank you for your attention.

Setting of the stiffness parameter determines a response of VarBC to satellite bias changes as well as NWP model biases.

$$\sigma_{\beta_b}^2 = \sigma_{b_o}^2 = \frac{\sigma_o^2}{N_{bg}}$$

How set N_{bg} in LAMs??

"A statistically meaningful estimate of the observation bias is obtained if the bias parameters vary slowly in time and space." Dee (2005).

Initialization of bias parameters from a global model requires a consistency between global and LAM systems.

- set of predictors,
- the RTTOV and satellite data pre-processing,
- b differences between the radiance bias are not large.

In the active DA, the default setting of the VarBC adaptivity has too slow response to satellite bias changes for particular AMSU-A channels.

The VarBC response to an artificial bias 0.3 K in terms of bias parameters during October 2015.