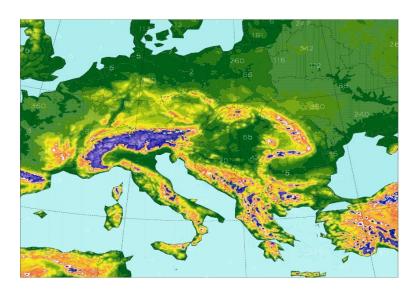
Regional Cooperation for Limited Area Modeling in Central Europe

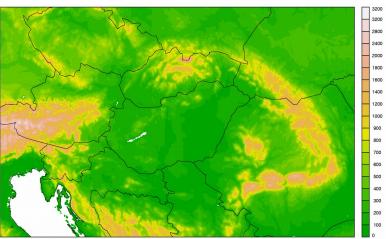
Data assimilation work in Hungary

Helga Toth, Viktoria Homonnai, Panna Sepsi, Mate Mile Yelis Cengiz (Tr)

Outline

- Status of operational DA systems
- Validation of cy40t1 for data assimilation
- ALARO DA problems (VARBC errors, NOAA-18 MHS)
- ALARO DA CANARI+missing first guess fluxes
- AROME EKF surface assimilation (see Helga's presentation)
- AROME OI_main surface assimilation
- Investigation of AMDAR humidity observation (see Viki's presentation)
- Impact study of using Slovenian Mode-S MRAR observations (see Viki's presentation)
- Radiosonde observations valid at 02UTC
- GNSS ZTD assimilation in AROME 3DVAR
- OOPS related activities





Operational NWP and DA systems

- ALARO
 - 8km horizontal, 49L vertical
 - cy38t1_bf03
 - SMS environment
 - 4 runs/day up to 60 hours
 - 3 hourly coupling IFS global
 - Operational CANARI+3DVAR
 - Observations: SYNOP, AMDAR, TEMP SEVIRI, Geowind AMV, NOAA-18 AMSU-A, MHS

- AROME
 - 2.5km horizontal, 60L vertical
 - cy38t1_bf03
 - 8 runs/day up to 48 hours
 - 1 hourly coupling IFS global
 - Operational 3DVAR 3h RUC
 - Observations: SYNOP, AMDAR, TEMP

Validation of cy40t1

- The cy40t1 and its validation was started in Hungary
- The forecast model was successfully running for both ALARO and AROME
- The data assimilation is still not finished due to problems of the use of radiance observations
 - The conventional observations are fine
 - The correct create_ioassign is used
 - Error message

2016/09/02 11:40:30 fatal in module rttov_checkinput.F90:0237 invalid surface pressure (profile number = 1) 2016/09/02 11:40:30 fatal in module rttov direct.F90:0402

WARNING: Problems in RTTOV call for NOAA 19 223 SENSOR=MHS

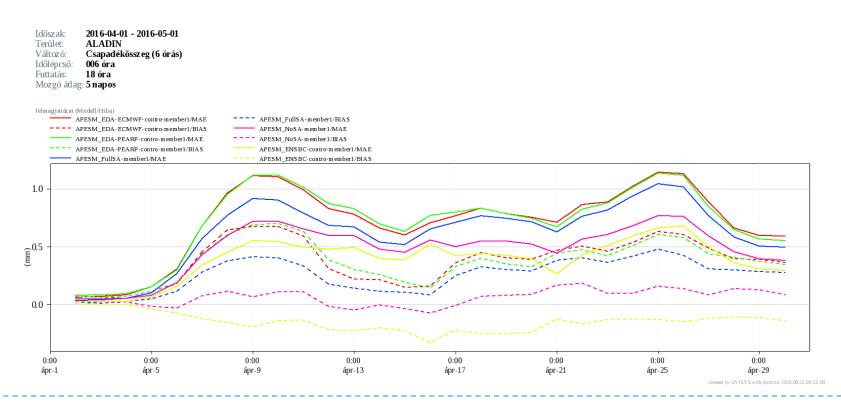
- cy40t1_bf06 was also tested
- Still very little time spent on this validation, therefore it can be a simple crash!

ALARO Data Assimilation (1)

- After NOAA-16 decommissioning there is no AMSU-B sensor in use, only MHS
 - However we are still using the code of AMSU-B sensor for NOAA-18 MHS (in namel_bator)
 TS AMSUB(209)%T SATSENS%MODSENSOR=4,
 - What is your practice?
- Furthermore (NOT in connection with the previous issue) there is still rare crash in screening with the following error:

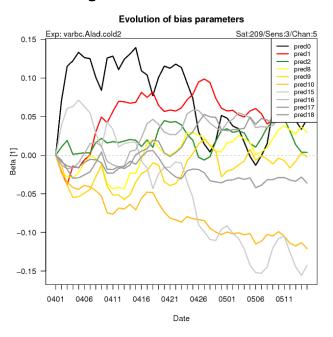
```
[myproc#44, tid#1, pid#29240]:
                                MASTER
[myproc#44, tid#1, pid#29240]:
                                 CNT0
[myproc#44, tid#1, pid#29240]:
                                  CNT1
[myproc#44, tid#1, pid#29240]:
                                   CNT2
[myproc#44, tid#1, pid#29240]:
                                    CNT3
[myproc#44, tid#1, pid#29240]:
                                     CNT4
[myproc#44, tid#1, pid#29240]:
                                      OBSV
[myproc#44, tid#1, pid#29240]:
                                       TASK0B
[myproc#44, tid#1, pid#29240]:
                                        TASKOB>KSET LOOP
[myproc#44, tid#1, pid#29240]:
                                         TASK0B>0BSGRP=AMSUB: 00209.04.210.07
[myproc#44, tid#1, pid#29240]:
                                          HRETR
[myproc#44, tid#1, pid#29240]:
                                           RADTR
[myproc#44, tid#1, pid#29240]:
                                            RTTOV EC
[myproc#44, tid#1, pid#29240]:
                                             RTTOV CALCBT BASIC
```

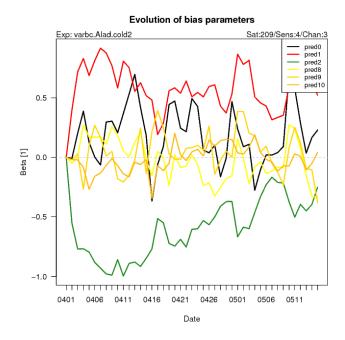
Asking again do you experience such error in your system?



ALARO Data Assimilation (2)

- Problems with ALARO precipitation forecasts reported by OMSZ forecasters and objective verification as well.
- The main source of the problem was identified as the malfunction of VARBC and the use of radiance observations in ALARO DA system.
- Different experiments were performed to analyze the precipitation case studies from April 2016.

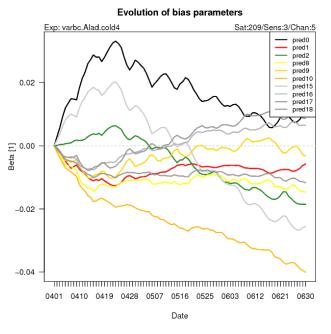


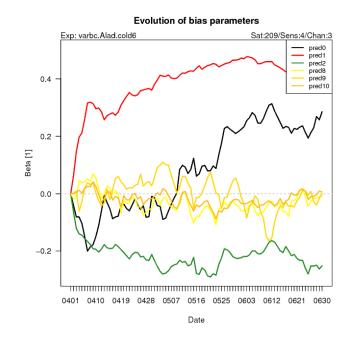


ALARO Data Assimilation (2)

• Results from VARBC diagnostic program (coldstart passive assim. with the current VARBC settings):

NBG=5000

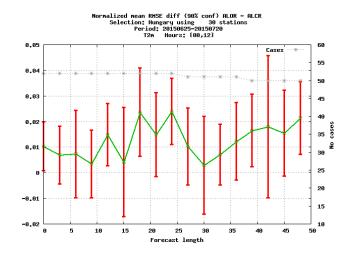


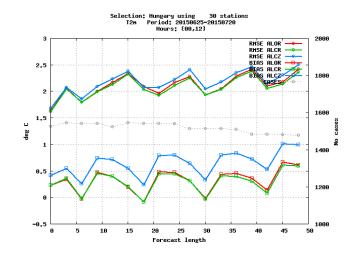


ALARO Data Assimilation (2)

 Results from VARBC diagnostic program (coldstart passive assim. modified LISTE_LOC and NBG parameters):

- NBG=120000
- AW reduced
- Network time dependent LISTE_LOC
- Opinion?





ALARO Data Assimilation (3)

- Operational CANARI settings were checked after reporting problems from Prague with missing surface fluxes of first guess.
- In Hungary those fields are also missing and an experiment was executed with the correction.
- The solar angle dependency of CANARI increments (SMU0) was also tested in another ALARO DA experiment.

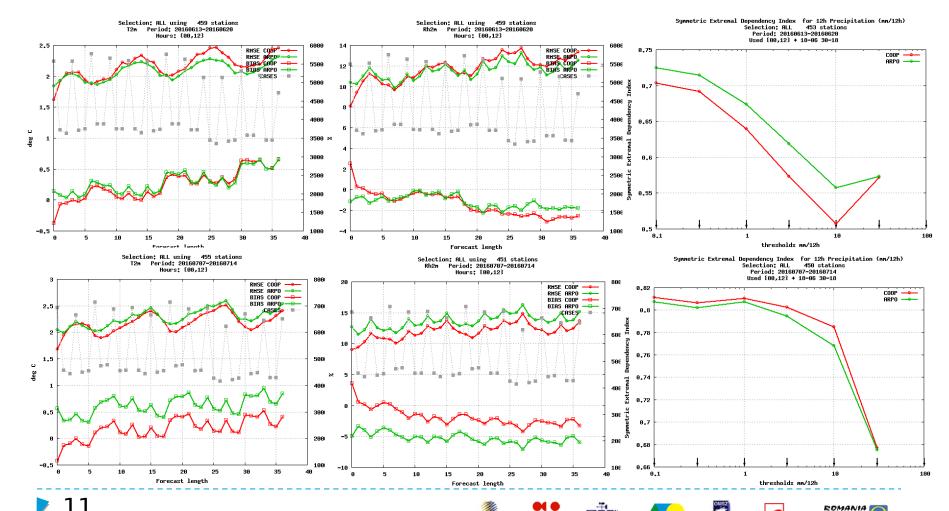
Temp 2m RMSE Diff Oper-AddFlux

Temp 2m RMSE-BIAS

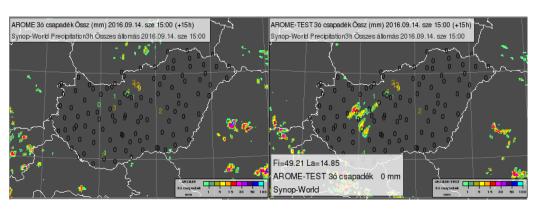
Oper: red AddFlux: green SMU0=7: blue

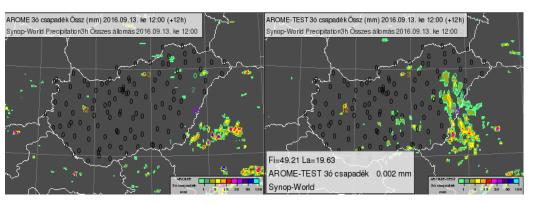
AROME OI_main surface assimilation

- The current operational AROME DA system uses downscaled ALARO surface analyses at main synoptic network times.
- AROME OI_main surface assimilation has been studied since 2011 (and the OI_main increments have been found realistic), but the results were not convincing compared to the current operational one.
- The modifications in OI assimilation settings slightly changed the performance of AROME forecasts (biggest effect of the solar zenith angle dependency: SMU0).
- It was also concluded that the ALADIN and AROME PBL parametrization is quite different and independent systems are strongly wished.



AROME OI_main surface assimilation


 Parallel OI_main surface assimilation cycle has been started at the beginning of this spring (very long spin-up) to make verification for this summer.




AROME OI_main surface assimilation

- The downscaled ALARO surface analysis provides cold and wet bias in AROME
- The OI_main based AROME surface analysis gives warm and dry bias in AROME

Radiosonde observations at 02UTC

 There are TEMP observations frequently valid at 02UTC and occasionally at 03UTC from Austria.

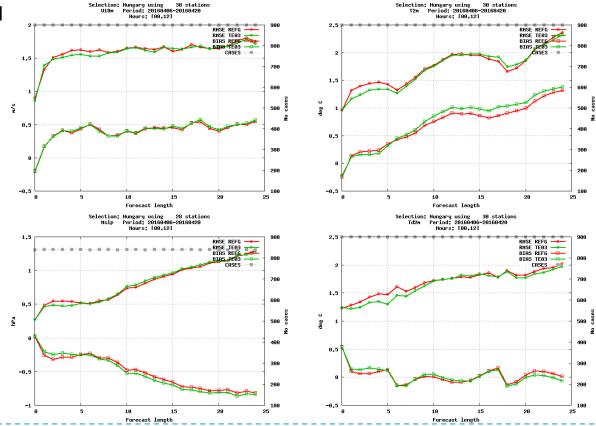
```
ncftp / > ls 02/5/obsoul/current/
obsoul_5_xxxxxx_xx_2016091702.gz
obsoul_5_xxxxxx_xx_2016092002.gz
obsoul_5_xxxxxx_xx_2016091802.gz
obsoul_5_xxxxxx_xx_2016091902.gz
ncftp / > ls 03/5/obsoul/current/
```

[mmate@blade12:/home/mmate]\$ lcn /mnt/CDS4/OBS/cugt/*0300*

-rw-rw-r-- 1 nmoper 104 16384 Sep 9 03:23 /mnt/CDS4/OBS/cugt/cugt20160909_0300 -rw-rw-r-- 1 nmoper 104 16384 Sep 10 04:23 /mnt/CDS4/OBS/cugt/cugt20160910_0300 -rw-rw-r-- 1 nmoper 104 16384 Sep 12 04:13 /mnt/CDS4/OBS/cugt/cugt20160912_0300 -rw-rw-r-- 1 nmoper 104 16384 Sep 14 04:23 /mnt/CDS4/OBS/cugt/cugt20160914_0300 Immate@blade12:/home/mmatels.lcn/mnt/CDS4/OBS/cugt/*0200*

```
[mmate@blade12:/home/mmate]$ lcn /mnt/CDS4/OBS/cugt/*0200*
-rw-rw-r-- 1 nmoper 104 16384 Sep 7 04:13 /mnt/CDS4/OBS/cugt/cugt20160907_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 8 04:13 /mnt/CDS4/OBS/cugt/cugt20160908_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 9 02:53 /mnt/CDS4/OBS/cugt/cugt20160909_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 10 04:03 /mnt/CDS4/OBS/cugt/cugt20160910_0200
-rw-rw-r-- 1 nmoper 104 19008 Sep 11 04:03 /mnt/CDS4/OBS/cugt/cugt20160911_0200
-rw-rw-r-- 1 nmoper 104 19008 Sep 12 04:03 /mnt/CDS4/OBS/cugt/cugt20160912_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 14 04:03 /mnt/CDS4/OBS/cugt/cugt20160914_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 16 04:13 /mnt/CDS4/OBS/cugt/cugt20160915_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 16 04:13 /mnt/CDS4/OBS/cugt/cugt20160916_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 18 03:53 /mnt/CDS4/OBS/cugt/cugt20160918_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 18 03:53 /mnt/CDS4/OBS/cugt/cugt20160918_0200
-rw-rw-r-- 1 nmoper 104 16384 Sep 19 04:03 /mnt/CDS4/OBS/cugt/cugt20160919 0200
```

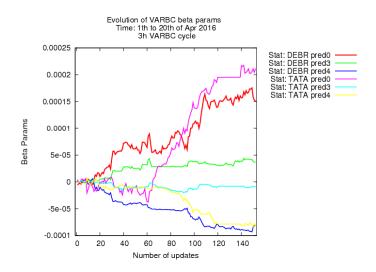
-rw-rw-r-- 1 nmoper 104 19008 Sep 20 04:03 /mnt/CDS4/OBS/cugt/cugt20160920 0200



Radiosonde observations at 02UTC

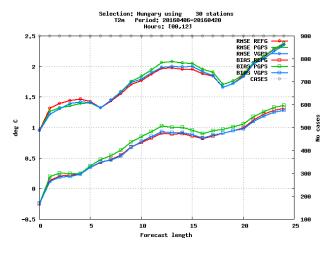
- In 3 hourly RUC these are important observations, but in Hungary we are fetching TEMP observations valid at time of the analysis.
- Is it correct to use TEMP with -1,+1 assimilation window?
- We made one test:

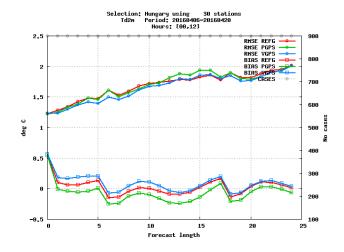
Only conventional observations!

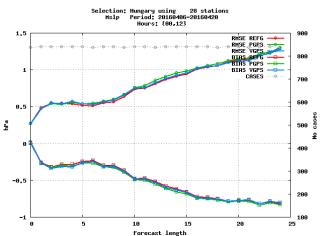


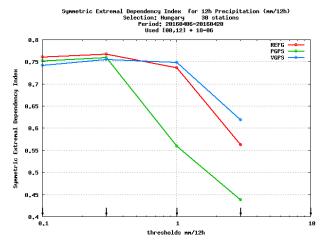
The assimilation of GNSS ZTD in AROME 3DVAR

- The use of GNSS ZTD was continued in AROME 3DVAR.
 - Revision of SGO1 EGVAP network and its measurements
 - Reassess the whitelist generation procedure (thinning 40km, biasmax 15mm, stdevmax 15mm)
 - → The ZTDs from SGO1 network have good quality and coverage over Hungary
- For bias correction both static and VARBC were tested.
- VARBC with whitelist of active stations, but with zero initial bias information
- Additionally VARBC was extended with more predictors (pred3 and pred4) in varbc pred.

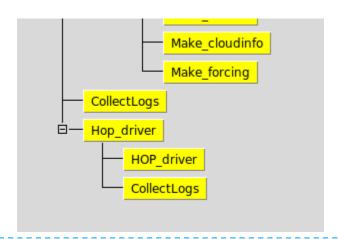







The assimilation of GNSS ZTD in AROME 3DVAR

The use of GNSS ZTD was continued in AROME 3DVAR.



OOPS activities in Hungary

- The locally installed OOVAR was tested with more observation types, but the humidity increments was found to be erroneous.
- In 2016 the HOP driver was investigated mostly.
 - The reproduction of HOP driver was successful in HARMONIE scripting system (original framework has been done by Eoin)
 - The installation of HOP driver with gmkpack was not successful
 - Also the installation of cy42r2 on local platform was not finished due to platform dependency problems:

catastrophic error: **Internal compiler error: internal abort** Please report this error along with the circumstances in which it occurred in a Software Problem Report. Note: File and line given may not be explicit cause of this error.

From HARMONIE's refactoring experiment:

The end

- Thank You for your attention!
- Questions?
- Answers?

