

Surface Assimilation using EKF method in Hungary

Helga Tóth, Balázs Szintai, László Kullmann and Máté Mile Hungarian Meteorologial Service Email: toth.h@met.hu

Outline

Surface assimilations in Hungary

- AROME-Surfex EKF
- LDAS (Land Data Assimilation System) in ImagineS project
- EKF data Assimilation
- ImagineS project (2012-2016)
- Validation
 - 1D (against in-situ measurements from Hegyhátsál)
 - 2D (against satellite data)
 - Agricultural utilization, drought indicators

<u>Main differences between the</u> <u>PREKF</u>EKF

- Observations (2): SYNOP
 T2m, Rh2m => gridded
 information with CANARI
- Control vectors (4):
 - TG1, TG2, WG1, WG2
- Works only NATURE tile but only in 1 patch
- SEKF (B is constant)
- Surfex 6.0
- Data Assimilation Working Days, Bratislava 30 Sentember - 2 October

- Observations (2): Gridded satellite informations (LAI, SSM)
 - Control vectors (3):
 - LAI, WG1, WG2
 - Works only in NATURE tile, but for all pacthes (max. 12)

- EKF (B is time dependent)
 - Surfex 7.3

Observation settings

Van 200 Mienie Kar

SYNOP T2m, Rh2m => gridded information with CANARI

&NACVEG:

- SIGH2MO=0.01 (default: 0.1) HU2m observation error
- SIGT2MO=0.1 (def., 1.0) T2m obs. error

&NAM CANAPE:

- REF A H2=45000 (def. 50000) HU2m observation horizontal scope
- REF A T2=40000 (def.: 50000) T2m. observation horizontal scope
- REF 5 H2=1.0 (def.: 0.3) HU2m sigma o.
- REF_S_T2=16.0 (def:: 3.0) T2m sigma_o. Data Assimilation Working Days, Bratislava, 30 September - 2 October.

Gridded satellite informations (LAI, SSM):

- LAI: SPOT-VEG 1km res. 10 days samping.
- SWI (Soil Water Index): MetOp. ASCAT 10 km res. 1 day sampling.
 - SSM=SWI*(wmax-wmin)
 - +wmin

Extended Kalman Elter Assimilation

- $x_{i}^{a} = x_{i}^{b} + K(y_{i}^{o} H(x_{0}^{b}))$ $K = BH^{T}(HBH^{T} + R)^{-1}$ A = (I KH)B $H = \frac{\partial y_{1}}{\partial x_{0}}$ $H = \frac{\partial y_{1}}{\partial x_{0}} \qquad \boxed{\Box}$ $H_{ij} = \frac{\partial y_{i}}{\partial x_{j}} \approx \frac{y_{i}(x + \delta x_{j}) y_{i}(x)}{\delta x_{i}}$
- Analysis at time t
- Kalman Gain
- Analysis increment
- H: Jacobian matrix of the observation operator (Taylor expansion of H obs. operator, tangent linear hipotesis)
- The elements of the Jacobian matrix

Aromie-ekf

LDAS

• H: model TG1, TG2, WG1, $WG2 \rightarrow y_i(x + \delta x,) = y_i(x)$ H_i H=contain = the forward model (progrigstic Canopy scheme)

EKE Elow charts

Perturbed init. Cond. (t=0) (tg1, tg2, wg1, wg2 or lat.

NVAR

SURFEX

Obs. and model errors (MSDIMU_PER, OBSIMU_PER)

Initial cond. (Prep.lfi) t=0

SURFEX

Obs. and model errors (MSDIMU_REF, OBSIMU_REF) Observations (t2m, rh2m or LAI, SSM)

Analysis (t=t)

Evolve B matrix (only in LDAS)

Qestion

In Arome EKF the analysis is applied at the end of the assimilation window or at the beginning? (in the flow chart the analysis is applied at the end)

macines

Implementation of Multi-scale Agricultural Indicators Exploiting Sentinels

- EU-FP7 project: <u>http://fp7-imagines.eu</u>
- Period: 40 month (Nov. 2012. Febr. 2016.)
- 8 Institutions (Fr, Sp, Be, UK, Hu), From this 2 SME
- Aims:

*

- Improve the retrieval of basic biophysical variables coming from PROBA-V and LandSat for Copernicus Global Land Service.
 - Assimilation of these satellite data into Surface model monitoring of the evolution of the vegetation and the soil.
- Demonstrate the added value of this products for the community of users
 - Data Assimilation Working Days, Bratislava 30 Sentember - 2 October

LDASINHUNGENV

SURFEX (SURface Externalisée) 7.3

 Each gridbox is represented by 4 surface types: Nature, Lake, Town Sea -> Tiles

ANALAS ANALAS

- Nature tile is separated 12 patches (grassland, C3, C4 plants, deciduous tree etc)
- Tiles:
 In nature tile the interaction

 Nature, Lake,
 between the Soil,

 Town, Sea
 Atmosphere and Biosphere

 Foxes averaged
 is described with ISBA +

 Patches for the tile Nature
 photosynthesis model >

 SURFEX thing and coupling with an atmospheric model
 BBA-A-gs (3 layers Force

 Source: http://www.cnrm.meteo.fr/surfex/spip.php?rubriquePrognostic eq.-s for T, w +

 Data Assimilation Workingf@ajon Bratislavage

- Surfex was run over Hungary with 8 x 8 km • resolution, 24 h forecast with 6 h outputs freq.
- Atmospheric forcings come from ALADIN NWP model (air temperature, humidity, wind speed, precipitation) + LandSAF long and short wave radiation
- Run with offline mode -> no influence to the atmosphere

OUTPUTS:

Hegyhátsál

- LAI (Leaf Area Index)
- WG2 (Volumetric soil moisture content)
- GPP (Gross Primary Product), NEE (Net Ecosystem Exchange)

HUNGARY

Latent

VALIDATION: 1D (against in situ) measurements of Hegyhátsál) 2D (against) satellite) agricultural utilization: simm. biomass vs. yield statistics (National measurements, n Working Days, 🛿 🖓 🖓 🗤 🖓 🖓 2 October, 2015 model)

Model nums

Surfex Openloop run for 2008-2013 Atmospheric forcings Surfex ISBA-A-gs Active biomass developing, fluxes, prognostic variables

SWI, LAI satellite measurements Atmospheric forcings

Surfex ISBA-A-gs

un for 2008-2013

Active biomass developing, fluxes, prognostic variables

Results (2D)

2010 (wet)

AS

OP

SAT

Difference

May Juni Jul У Aug

Apr

OP

2012 (dry)

Data Assimilation Working Days, Bratislava,

30 Sentember - 2 October 2015

Sept

Results (1D)

In-situ measurements of Hegyhátsál. Data are available from two levels:

3 m height over a grassland area (valid for only the grassland patch):

-LAI (weekly)

-Soil Moisture (daily) (derived from 10-30 cm depth)

-Carbon fluxes: GPP, Reco and NEE (daily)

-Water flux: Latent Heat (LE) (daily)

82 m height (valid for the whole grid-point):

-Carbon fluxes: GPP and NEE (daily)

-Water flux: LE (daily)

Cropestimation

Simulated C3 BIOMASS vs. measured yield and vs. WOFOST for 2008-2013

Good agreement between LDAS BIOMASS and yield

Relative anomaly ma ((sim-obs)/obs) for a counties in Hungary: huge overestimation for Openloop

-200-180-160-140-120-100-80 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 200

Droughtindicators

Step 1: Scaled anomalies for 10-day period (LAI and SWI)

AnoLAI(i, yr) $\frac{DLAI(i, yr)}{dev(DLAI(i))}$

Where, DLAI is the diff. Between LAI for particular month or 10-day period of year (yr) and its average of interannual value. stdevDLAI is the standard deviation of DLAI

Step 2: provide the complementary of LAI and SWI => useful tool as a drought indicators

2015

Drought in Hungary in 2012 August AnoSWI for 1-10. 08. 2012 => AnoLAI 11-

-2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0

AnoSWI could be a good prior to conclude the trend of LAI

3 –2 –1 0 1 2 3

Imacines Plans

- Assimilation of PROBA-V LAI for 2014-2015
 Mini workshop for end-users
- Drought indicators (SWI and LAI anomalies)