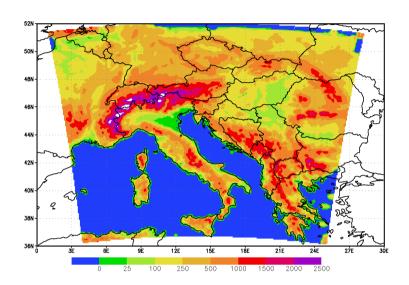
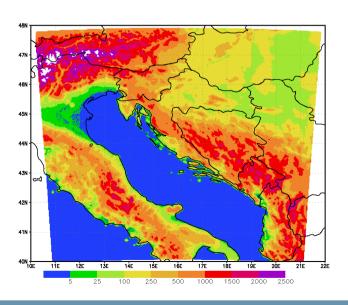
### DATA ASSIMILATION STATUS CROATIA

Antonio Stanešić, Tomislav Kovačić, Kristian Horvath and Stjepan Ivatek-Šahdan






### Outline


- Domain & assimilation setup
- New from last WD
- Future plans





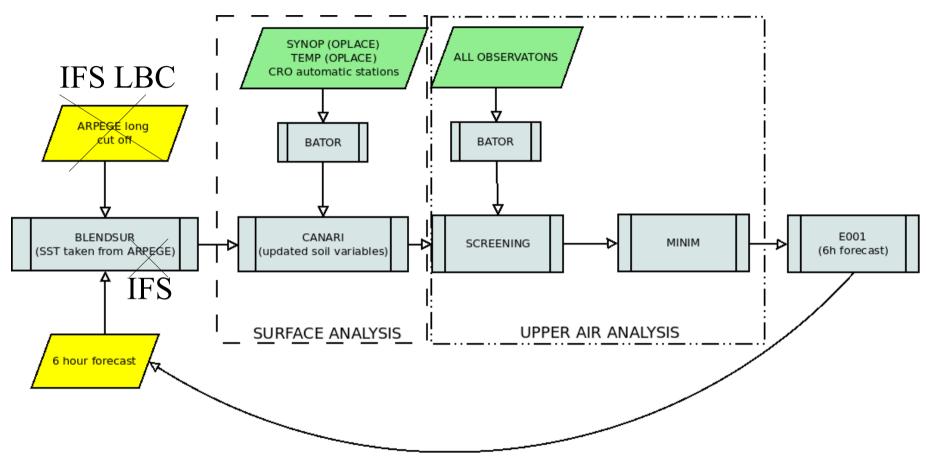
## Operational setup





### **ALADIN HR domain**

- 8 km horizontal resolution
- 37 levels, 229x205 (240x216) grid points
- 32T3: ALARO0-3MT, old radiation scheme, DFI
- 72 hours forecast, 1-3 hourly output


### **ALADIN HR22 domain**

- 2 km horizontal resolution: 439x439 (450x450) grid points
- hourly 2 km dynamical adaptation up to 72 hrs
   @ 15 levels for 10 m wind forecast, model version AL29T2-mxl
- 24 hrs 2 km full NH model run @ 37 levels, started from 00UTC 6h forecast, model version AL36T1, ALARO0 set-up (operational since July 2011.)





### Assimilation setup



- Cy35t1: CANARI, BATOR, screening, minimization; 6hr cycle
- Cy32t3: e001, e927
- OPLACE: SYNOP and automatic stations, TEMP, AMV, AIREP, NOAA16, NOAA18, MSG9/10





### Development from last WD

- Coupling to ECMWF from 01.01.2014. operational
- 4 runs per day (00, 06, 12, 18 UTC), 72hrs forecast
- No progress on radar data assimilation
- CY38t1\_bf03 tests in progress;
  - all data assimilation configurations tested results comparable with cy35t1





- Data assimilation cycle (CY38t1\_bf03) in "parallel run" started at 01.11.2013.
- New settings:
  - ENSB B matrix instead NMC used in current operational settings
  - NOAA19 amsua/mhs
  - METOP amsua/mhs passive assimilation (fail(EXPERIMENTAL))
     in mf\_blacklist)
  - VARBC coldstart option used
  - B matrix tuned over period of 1 month (3 iterations)
    REDNMC=1.2, QREDNMC=1.4, SIGMAO=0.8 using tuneBG tool





- VARBC setup and issues
  - Coldstart tested (01.11.2013 31.12.2013)
  - Predictor 5 not used (namelist and source code modification)
  - AMSUA (NOAA18 and NOAA19)
     – problem with geopotential analysis

TEMP TEMP

| Var    | Total | Active | Pass | Reject | Black | O-G<br>Mean | O-A<br>Mean | O-G<br>STD | O-A<br>STD |
|--------|-------|--------|------|--------|-------|-------------|-------------|------------|------------|
| Report | 1105  | 1105   | 0    | 0      | 0     |             |             |            |            |
| Geo    | 14451 | 13620  | 0    | 297    | 537   | 0.18        | 1.72        | 10.67      | 12.76      |
| T      | 37283 | 37027  | 0    | 59     | 197   | 0.01        | 0.08        | 1.35       | 1.01       |
| U      | 35110 | 34891  | 0    | 59     | 162   | -0.03       | 0.01        | 3.39       | 2.20       |
| V      | 35110 | 34891  | 0    | 59     | 162   | -0.07       | -0.01       | 3.47       | 2.25       |
| Q      | 35348 | 23001  | 0    | 349    | 12180 | 0.03        | -0.01       | 0.71       | 0.43       |
| RHU    | 34273 | 22486  | 0    | 177    | 11648 | -4.90       | 0.00        | 20.87      | 0.00       |

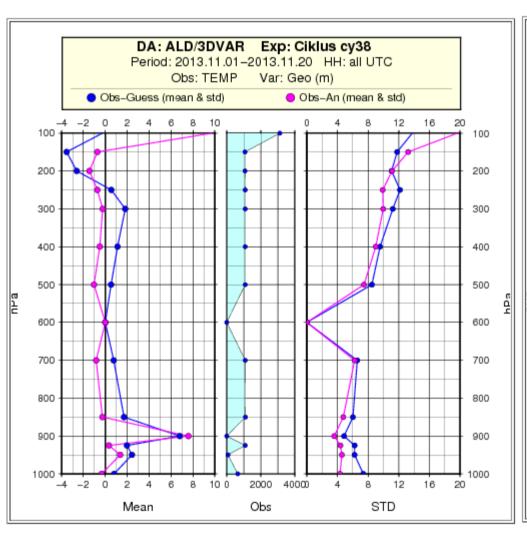
| Var    | Total | Active | Pass | Reject | Black |       | O-A<br>Mean |       | O-A<br>STD |
|--------|-------|--------|------|--------|-------|-------|-------------|-------|------------|
| Report | 1183  | 1183   | 0    | 0      | 0     |       |             |       |            |
| Geo    | 15471 | 14555  | 0    | 351    | 571   | 0.21  | 0.73        | 10.70 | 11.09      |
| T      | 39888 | 39623  | 0    | 62     | 203   | 0.01  | 0.00        | 1.35  | 1.06       |
| U      | 37634 | 37416  | 0    | 50     | 174   | -0.03 | 0.00        | 3.37  | 2.38       |
| V      | 37634 | 37416  | 0    | 50     | 174   | -0.06 | -0.01       | 3.47  | 2.42       |
| Q      | 37782 | 24586  | 0    | 351    | 13046 | 0.02  | -0.00       | 0.69  | 0.47       |
| RHU    | 36634 | 24012  | 0    | 183    | 12481 | -5.37 | 0.00        | 20.54 | 0.00       |

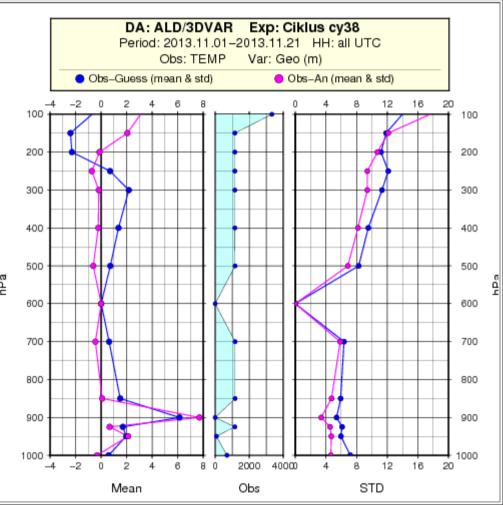




### NOAA-19 AMSU-A

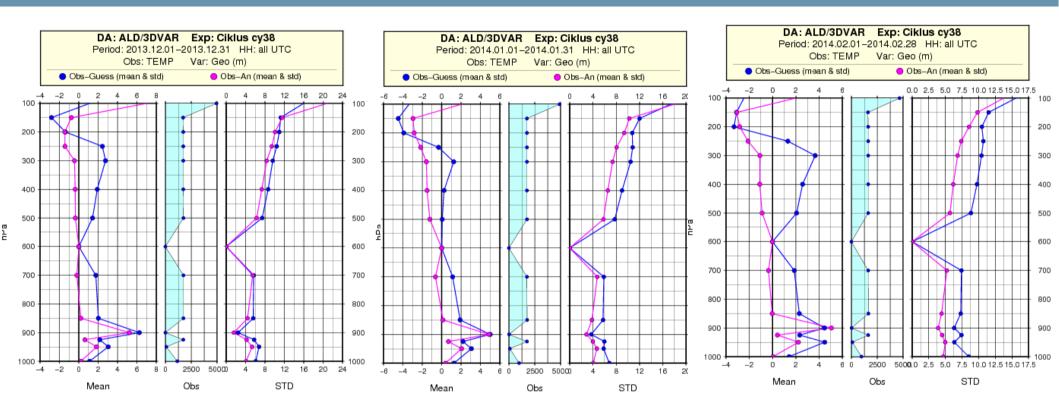
| HOAR-10 AMOU-A |       |        |       |        |       |       |             |            |      |  |
|----------------|-------|--------|-------|--------|-------|-------|-------------|------------|------|--|
| Channel        | Total | Active | Pass  | Reject | Black |       | O-A<br>Mean | O-G<br>STD |      |  |
| 1              | 34920 | 0      | 0     | 12179  | 34920 | 0.00  | 0.00        | 0.00       | 0.00 |  |
| 2              | 34920 | 0      | 0     | 12192  | 34920 | 0.00  | 0.00        | 0.00       | 0.00 |  |
| 3              | 34897 | 0      | 0     | 12074  | 34897 | 0.00  | 0.00        | 0.00       | 0.00 |  |
| 4              | 34897 | 0      | 0     | 2120   | 34897 | 0.00  | 0.00        | 0.00       | 0.00 |  |
| 5              | 34897 | 1168   | 0     | 13152  | 32998 | -0.51 | -0.04       | 0.26       | 0.10 |  |
| 6              | 34897 | 1469   | 0     | 4999   | 32509 | -0.46 | -0.17       | 0.22       | 0.20 |  |
| 7              | 34588 | 1583   | 0     | 813    | 32192 | -0.45 | -0.29       | 0.33       | 0.34 |  |
| 8              | 34897 | 9610   | 0     | 18548  | 6739  | 0.22  | 0.16        | 0.72       | 0.51 |  |
| 9              | 34897 | 9610   | 0     | 18548  | 6739  | -0.19 | -0.01       | 0.28       | 0.19 |  |
| 10             | 34897 | 9610   | 0     | 18548  | 6739  | -0.26 | 80.0        | 0.41       | 0.23 |  |
| 11             | 34897 | 9610   | 0     | 18548  | 6739  | -0.09 | -0.10       | 0.81       | 0.25 |  |
| 12             | 34897 | 9610   | 0     | 18548  | 6739  | 1.39  | 0.24        | 1.00       | 0.34 |  |
| 13             | 34897 | 9153   | 28158 | 22297  | 6739  | 4.53  | 4.17        | 2.34       | 2.29 |  |
| 14             | 34897 | 0      | 0     | 34897  | 34897 | 0.00  | 0.00        | 0.00       | 0.00 |  |
| 15             | 34897 | 0      | 0     | 12151  | 34897 | 0.00  | 0.00        | 0.00       | 0.00 |  |


### NOAA-19 AMSU-A


| Channel | Total | Active | Pass  | Reject | Black | O-G<br>Mean |       | O-G<br>STD | O-A<br>STD |
|---------|-------|--------|-------|--------|-------|-------------|-------|------------|------------|
| 1       | 38075 | 0      | 0     | 13423  | 38075 | 0.00        | 0.00  | 0.00       | 0.00       |
| 2       | 38075 | 0      | 0     | 13437  | 38075 | 0.00        | 0.00  | 0.00       | 0.00       |
| 3       | 38049 | 0      | 0     | 13315  | 38049 | 0.00        | 0.00  | 0.00       | 0.00       |
| 4       | 38049 | 0      | 0     | 2378   | 38049 | 0.00        | 0.00  | 0.00       | 0.00       |
| 5       | 38049 | 1238   | 0     | 14521  | 36025 | -0.49       | -0.08 | 0.26       | 0.10       |
| 6       | 38049 | 1528   | 0     | 5396   | 35551 | -0.44       | -0.23 | 0.22       | 0.19       |
| 7       | 37740 | 10340  | 30542 | 20202  | 7198  | -0.24       | -0.22 | 0.39       | 0.38       |
| 8       | 38049 | 10420  | 30783 | 20363  | 7266  | 0.20        | 0.19  | 0.72       | 0.70       |
| 9       | 38049 | 10420  | 30783 | 20363  | 7266  | -0.11       | -0.11 | 0.30       | 0.29       |
| 10      | 38049 | 10420  | 0     | 20363  | 7266  | -0.21       | 0.07  | 0.43       | 0.20       |
| 11      | 38049 | 10420  | 0     | 20363  | 7266  | 0.00        | -0.06 | 0.78       | 0.25       |
| 12      | 38049 | 10420  | 0     | 20363  | 7266  | 1.80        | -0.07 | 1.01       | 0.59       |
| 13      | 38049 | 9716   | 22548 | 24737  | 7266  | 5.07        | 3.42  | 2.43       | 2.29       |
| 14      | 38049 | 0      | 0     | 38049  | 38049 | 0.00        | 0.00  | 0.00       | 0.00       |
| 15      | 38049 | 0      | 0     | 13399  | 38049 | 0.00        | 0.00  | 0.00       | 0.00       |

Ch 7,8,9,13 - PASSIVE

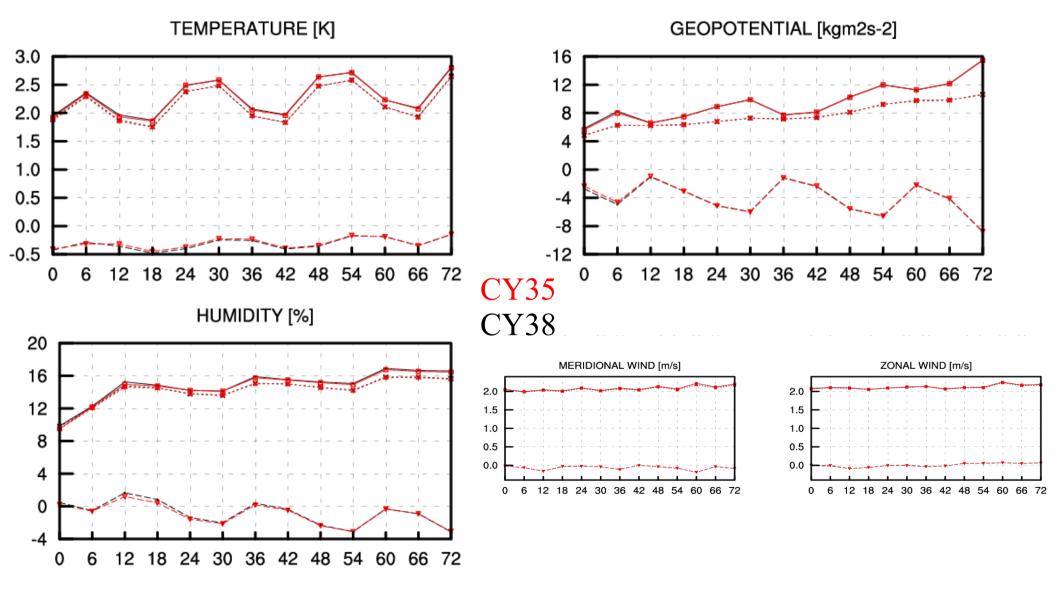










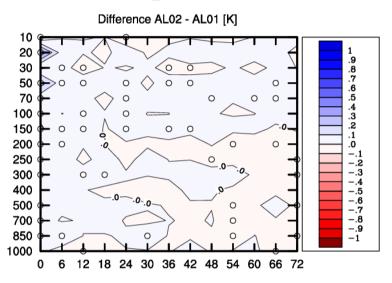


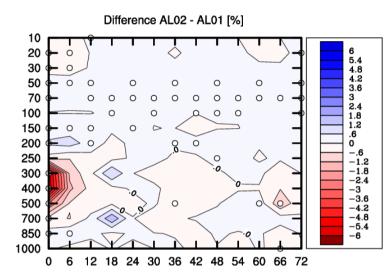





# CY38t1\_bf03 Scores for March 2014 vs. SYNOP and TEMP

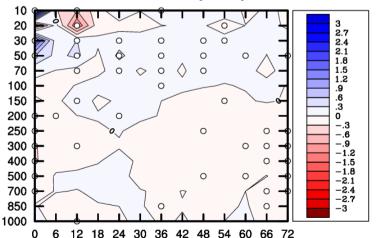





RMSE for March 2014 vs. TEMP

### Temperature

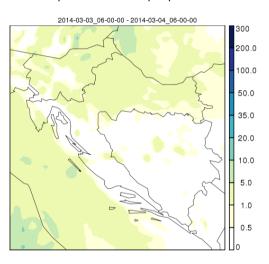

### Relative Humidity



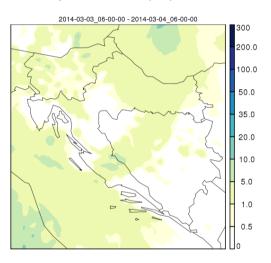


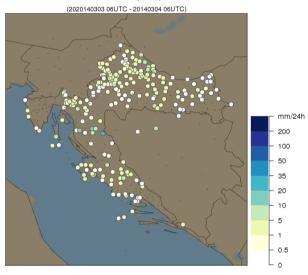
### Geopotential

Difference AL02 - AL01 [10m<sup>2</sup>s<sup>-2</sup>]




CY35 better CY38 better

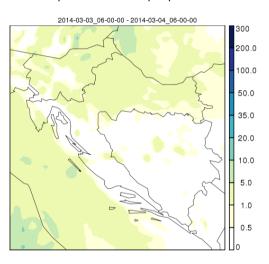


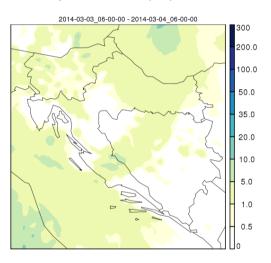

oper: 24h accumulated precipitation

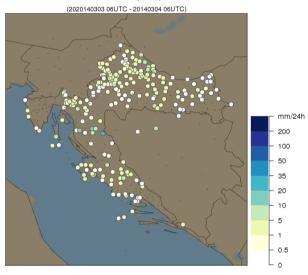


cy38: 24h accumulated precipitation





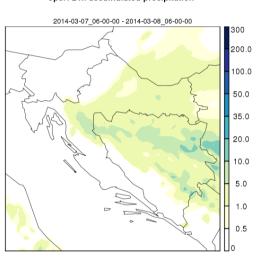



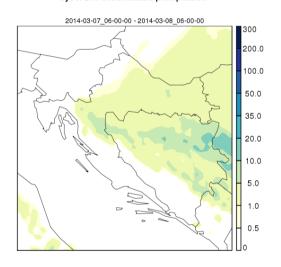

oper: 24h accumulated precipitation

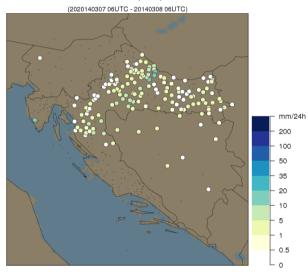


cy38: 24h accumulated precipitation





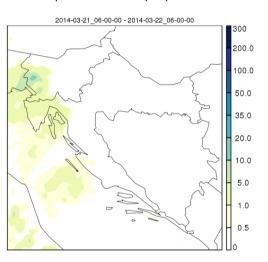



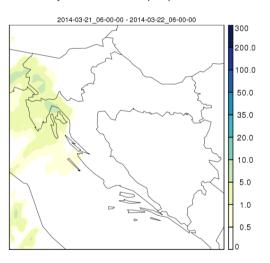

oper: 24h accumulated precipitation

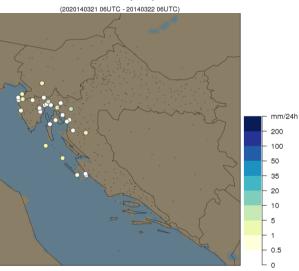


cy38: 24h accumulated precipitation





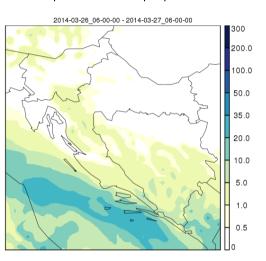



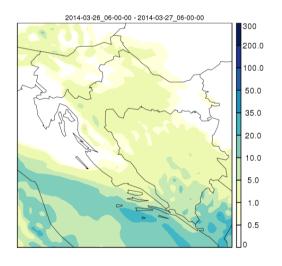

oper: 24h accumulated precipitation

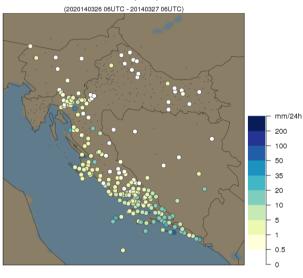


cy38: 24h accumulated precipitation





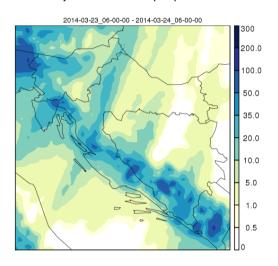

oper: 24h accumulated precipitation

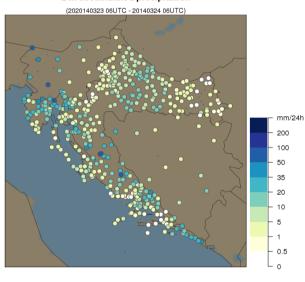


cy38: 24h accumulated precipitation






oper: 24h accumulated precipitation



#### cy38: 24h accumulated precipitation









### Future plans

- Continue tests with cy38 and new settings
- Compute ENSB matrix from IFS ensemble
- Compute B matrix for ALARO 4km domain; tune B matrix
- Test 3hr cycling
- Test Mescan correlation function within CANARI
- Continue work on radar data assimilation



