Data Assimilation Status in Romania

RC - LACE Data Assimilation Working Days

Mirela Pietriși National Meteorological Administration

1 / 22

September 2014

Assimilation setup

- Δx=6.5 km
- 240 x 240 grid points
- 49 vertical levels
- linear grid
- Lambert projection

- 6 hours assimilation cycle
- CI + LBC ← ARPEGE model at every 3 hours
- B_{matrix} → computed using Ensemble method (march - august 2009)
- SST \rightarrow from ARPEGE analysis
- CANARI \rightarrow surface analysis based on SYNOP
- 3DVAR \rightarrow data from OPLACE + local data
- cycle36t1-op2

MAY 2014

Observation:

- conventional data (including surface local data)
- satellite data: ATOVS/AMSU-A, ATOVS/AMSU-B (radiances from NOAA 16, 18), METEOSAT-9/SEVIRI radiances, AMDAR (T,u,v), GEOWIND from OPLACE system

Verification

MODE - Method for Object - based Diagnostic Evaluation

- provides diagnostic verification that is difficult to obtain using traditional verification measures: information about errors in location, size and intensity
- defines objects in both the forecast and observation fields (which are matched and compared to one another)
- summary statistics describing the objects and object pairs are produced; this statistics can be used to identify correlation and differences among objects → forecast strengths and weaknesses

Verification

- in what locations does the model have the best performance?
- what are the regimes in which the forecasts are better or worse?

Case Study: 15 May 2014

12 hours cumulated precipitation (06 - 18 UTC)

イロト イポト イヨト イヨト

Threshold > 20 I/m^2

Forecast Objects with Observation Outlines

Total interest value computed for a pair of simple objects:

			Fest	Obs	Interes
			1	1	0.9470
			8	7	0.8879
			2	2	0.8865
Fcst	Obs	Interest	5	3	0.8655
3	3	0.9101	6	4	0.8650
1	5	0.8668	4	3	0.7047
4	6	0.6531	7	7	0.6919
2	6	0.5743	7	6	0.6630
2	3	0.5683	4	6	0.5598
ASS	SIM		(OPE	R

3

æ

Threshold > 30 I/m^2

Total interest value computed for a pair of simple objects:

Fest	Obs	Interest			
1	1	0.9807	Fest	Obs	Interest
4	4	0.8286	1	1	0.9649
2	2	0.8248	3	4	0.8753
5	4	0.5813	2	2	0.8481
ASS	SIM			OPE	R

Forecast Objects with Observation Outlines

- 3

・ロト ・四ト ・ヨト ・ヨト

(4日)

Threshold > 40 I/m^2

Total interest value computed for a pair of simple objects:

Fcst	Obs	Interest	Fest	Obs	Interest
1	1	0.9938	1	1	0.9759
AS:	SIM		0	OPE	R

Forecast Objects with Observation Outlines

<ロト < 部 ト < 注 ト < 注 ト - 注

Case Study: 15 May 2014

12 hours cumulated precipitation (18 - 30 UTC)

13 / 22

イロト イポト イヨト イヨト

September 2014

Threshold > 10 l/m^2

Total interest value computed for a pair of simple objects:

Fest	Obs	Interest	Fest	Obs	Interest
1	2	0.9663	14	10	0.9712
4	5	0.9658	6	5	0.9590
10	6	0.9247	5	4	0.9289
3	3	0.9066	8	9	0.9083
9	11	0.8305	7	6	0.8537
4	6	0.7682	6	6	0.7760
11	7	0.7159	12	8	0.7569
10	10	0.6936	8	7	0.7395
5	4	0.6850	14	11	0.7261
6	8	0.6834	4	4	0.7214
7	4	0.6504	1	1	0.7189
3	4	0.6272	13	11	0.6885
7	6	0.6248	11	8	0.6540
11	9	0.6087	7	5	0.6337
٨٩٩	SIN/		C	DEE	>

Forecast Objects with Observation Outlines

æ

													CLUS	CEIV	Alto	reat	003	INTER	UNION	STME	reat	003	reat	003	101
CLUS	CEN	ANG	FCST	OBS	INTER	UNION	SYMM	FCST	OBS	FCST	OBS	TOT	PAIR	DIST	DIFF	AREA	AREA	AREA	AREA	DIFF	INT 50	INT 50	INT 90	INT 90	INTR
PAIR	DIST	DIFF	AREA	AREA	AREA	AREA	DIFF	INT 50	INT 50	INT 90	INT 90	INTR	1	2.42	65.17	30	39	15	54	39	13.06	13.20	19.78	22.04	0.9731
1	7.55	14.92	228	135	89	274	185	14.86	14.30	20.76	21.17	0.9663	2	3.54	45.00	3	4	0	7	7	12.39	10.05	13.19	11.70	0.7569
2	2.97	3.95	35	7	3	39	36	11.61	10.90	13.53	17.32	0.9066	3	2.89	25.98	4	6	1	9	8	11.46	12.35	12.23	20.50	0.9813
3	7.38	66.23	149	3	3	149	146	12.89	11.70	17.94	12.58	0.8305	4	2.56	22.70	3	8	3	8	5	13.71	13.10	13.99	15.57	0.9362
4	2.12	34.26	31	39	16	54	38	14.09	13.20	19.24	22.04	0.9962	5	3.05	42.71	12	6	1	17	16	15.83	12.05	18.65	14.40	0.8779
5	2.83	45.00	3	5	0	8	8	14.18	13.40	14.37	21.04	0.7159	6	6.48	11.96	168	60	1	227	226	16.32	18.75	48.10	28.27	0.7189

- 2

Threshold > 15 I/m^2

Total interest value computed for a pair of simple objects:

Fest	Obs	Interest	Fest	Obs	Interest
5	6	1.0000	2	3	0.9676
2	2	0.8895	5	8	0.8986
5	8	0.6943	1	4	0.8745
1	1	0.6514	3	5	0.7653
2	4	0.6122	4	6	0.6469
1	4	0.5806	1	1	0.6027
4	2	0.5302	5	6	0.5664

ASSIM

OPER

Forecast Objects with Observation Outlines

æ

													PAIR	DIST	DIFF	AREA	AREA	AREA	AREA	DIFF	INT 50	INT 50	INT 90	INT 90	INTR
CLUS	CEN	ANG	FCST	OBS	INTER	UNION	SYMM	FCST	OBS	FCST	OBS	TOT	1	1.40	7.94	4	7	3	8	5	17.40	20.00	18.72	21.62	0.967
PAIR	DIST	DIFF	AREA	AREA	AREA	AREA	DIFF	INT 50	INT 50	INT 90	INT 90	INTR	2	1.21	15.07	1	5	1	5	4	24.72	20.30	24.72	24.94	0.8986
1	0.31	15.12	9	8	8	9	1	18.09	20.05	20.40	23.73	1.0000	3	4.27	5.25	80	2	1	81	80	30.71	20.40	58.50	22.88	0.8745
2	5.94	74.68	99	40	28	111	83	18.67	19.00	22.16	24.70	0.8895	4	6.57	12.23	24	32	0	56	56	22.37	24.90	33.43	30.66	0.7653

◆□ ▶ ◆舂 ▶ ◆き ▶ ◆き ▶ ─ き

Threshold > 20 I/m^2

Forecast Objects with Observation Outlines

Total interest value computed for a pair of simple objects:

Fcst	Obs	Interest			
1	1	0.9380			
3	6	0.7080			
2	2	0.6798	Fcst	Obs	Interest
2	1	0.5880	2	4	0.7700
1	2	0.5804	1	3	0.6376
ASS	SIM		C	DPE	2

æ

< => < => < => < =>

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─ 臣

Conclusions

- as a general conclusion, the assim model shows a slight improvement comparing with oper model;
- for the first 12 hours, both models overestimated the amount of precipitation on the mountains (especially on the Curvature Carpathians); also the impact of assim model is quite visible in the western part of the country (the precipitation amount is increased with the respect to observation);
- for the next 12 hours, in the eastern part, both models failed to simulate correctly the forecasted area of precipitation in respect with the observed one; for assim model the precipitation amount is slightly reduced on the mountains.

20 / 22

Future plans

- computation of B_{matrix} on the new domain ($\Delta x = 5$ km, L60)
- pre-operational data assimilation cycle on the new domain

21 / 22

September 2014

Thank you!

DAWD (Zagreb)

æ