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In numerical weather prediction (NWP) an accurate high-resolution representation of the current
state of the atmosphere is needed as an initial condition for the propagation of a weather forecast.
Data assimilation provides techniques for combining observations of atmospheric variables with a
model state of the atmosphere to obtain a consistent representation known as the analysis. The
weighted importance of each contribution is determined by the size of its associated errors. Because of
the magnitude (up to 106) and relatively unknown structure of these error correlations, the observation
errors are assumed uncorrelated in most of the NWP centers. Although this assumption is reasonable
for pairs of observations measured by distinct instruments, it is entirely inaccurate for the observations
that are available at higher spatial frequency than the model resolution.

The assumption of zero correlations is often used in conjunction with spatial data thinning and/or
the observation error inflation [8], [9]. Data thinning allows to reduce observation density so that
spatial error correlations are not relevant. The error inflation is about increasing the observation error
more than diagnostics suggest to eliminate other error correlations (e.g. inter-channel correlations)
that are not reduced by data thinning. Guidance for selecting optimal thinning scales can be taken
from [10] who found that thinning scales of a threshold observation error correlation value of around 0.2
produced the smallest analysis error when error correlations are neglected and the diagonal observation
errors are not inflated.

Following the study [7], the Mode-S MRAR (MRAR) data assimilation in Aladin-CZ provides
mostly neutral impact on the weather forecast. Following this study, we aim to tune the 3D-Var
Aladin-CZ scheme in terms of data thinning, observation error setting and error inflation so that
the a setting should provide better treatment of the MRAR into the analysis. The modifications
are performed in three steps: we first study the horizontal and vertical error correlations to find an
optimal distance for horizontal and vertical data thinning (in Sec 3). Secondly, we estimate the MRAR
observation error based on the diagnostic method described by [11] (in Sec 4) and, finally, an optimal
error inflation is estimated based on the forecast impact study (in Sec 5).

1 Data assimilation

1.1 3D-Var scheme

The operational use of the high resolution models requires assimilation techniques that should follow
the issues such as numerical cost, robustness and the optimality of the solution. The best compro-
mise is currently made by the 3D-Var (three Dimensional Variational) assimilation scheme [3]. This
algorithm is based on Bayes’ theorem deriving the analysis in terms of probability distribution func-
tions. Provided that the observation errors εo and background errors εb are unbiased and mutually
independent:

E[εb] = E[εo] = E[εb(εo)T ] = E[εo(εb)T ] = 0 (1)

the analysis can be find by minimizing the quadratic cost function:

J(x) = 1
2(xb − x)TB−1(xb − x) + 1

2(y − h(x))TR−1(y − h(x)). (2)

The cost function (2) measures the distance from the analysis state x to the observations y and
the background state xb, weighted by the inverse of their respective error covariances R and B. In
order to compare observations with background, we use the observation operator h() that allows to
transform the model state space to observation space. The cost function minimization can be solved
approximately to obtain the best linear unbiased estimate (BLUE), xa [1]:

xa = xb +K(y − h(xb))

K = BHT (HBHT +R)−1
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where H is the linearized observation operator given by H = ∂h
∂x |xb

. The 3D-Var algorithm seeks
the minimum of (2) by performing several evaluations of the cost function and its gradient in order to
approach the minimum using a suitable descent algorithm [3]. Although conceptually useful, 3D-Var
treats observations as if they were valid at the same point in time, which is clearly an unrealistic
assumption. In that case, the observation within a specific assimilation window although depending
on time, are considered as observation of the analysis time. The length of assimilation window is
usually set according to a type of observation.

1.2 Observation error

We have seen that the specification of the error covariances for both the background and observations
will determine their weighted importance in the final analysis. The uncertainty associated with taking
an observation sample is represented through an error vector εo. The error vector is assumed to
have Gaussian distribution with zero mean and error covariance matrix R = E[εo(εo)T ]. The error
covariance matrix R is comprised of the individual observation error variances on the diagonal and the
error cross-covariances on the off-diagonals. A variance is defined as the mean-square deviation about
the mean of the error data; a covariance is a measure of the association between two error variables.

Observation errors are distributed in the horizontal and vertical and can generally be attributed
to four main sources: instrument noise, representativity error, pre-processing. In order to represent
accurately the observations in a data assimilation system we must be able to correctly determine both
the diagonal error variances and the off-diagonal cross-covariances. In order to study the off-diagonal
elements of R directly, it can help to transform the error covariances into error correlations using the
formula:

ρij ≡ corr(εi, εj) = cov(εi, εj)√
var(εi)var(εj)

(3)

where εi and εj are the errors associated with an observation at point i and j in space, respectively.
In the current operational assimilation systems at the CHMI, all observation error correlations are

assumed to be zero. This is a reasonable assumption for pairs of observations measured by distinct
instruments. However under certain conditions this assumption is entirely inaccurate.

Observation error correlations can be vertically or horizontally distributed. If observations are
used at a higher spatial frequency than the horizontal model resolution, then they will be affected by
horizontal correlated errors of representativity because the model will be unable to represent the finer
scale spatial structure given by the observations. Vertical errors of representativity will be present if
the vertical model resolution is too low to represent a small scale physical feature as represented in
the observation.

1.3 Observation error diagnostic

In order to simulate observation error correlations, we must have some understanding of the true error
structure. This is not a straightforward problem because error covariances cannot be observed directly,
only estimated in a statistical sense. Both the background, y − h(xb), and the analysis, y − h(xa),
innovations are useful sources of information on the statistical properties of the errors. A method
that address the separation of correlated observation and background errors was proposed by [11]
(Desroziers method). The principle of this method is to use post-analysis diagnostics derived from
linear estimation theory to statistically approximate the covariances of the observations, background
and analysis errors in observation space. Using the assumption of mutually uncorrelated observation
and background errors (1), we can find a statistical approximation of the observation error covariances:

E[do
a(do

b)T ] ≈ R (4)
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where do
b and do

a are the background and analysis innovation vectors. The relation (4) should
be satisfied provided the covariance matrices used in the cost function (2) are consistent with the
true observation and background error covariances E[εo(εo)T ] and E[εb(εb)T ]. This diagnostic can
be used as a consistency check to ensure the observation error covariances are correctly specified in
the analysis. For a simple case, Desroziers et al. (2005) show that the method has the capability of
retrieving spatial correlation structures of observation errors, even if the initial assumed observation
error is uncorrelated. This is possible as long as the true background errors and the true observation
errors have sufficiently different correlation structures. Such results are encouraging because the
diagnostic by its construction is nearly cost-free, and it allows the distinction between observation
and background correlation structure. However, the relation (4) only holds exactly when the errors
assumed in the assimilation are equal to those found in reality and the observation operator is linear.
Care must therefore be taken when interpreting the results using these diagnostics.

2 Model Aladin-CZ
The limited area model ALADIN (Aire Limitee Adaptation Dynamique Developpement InterNational)
is operated at the Czech Hydrometeorological Institute since 1994. We use a hydrostatic version that
covers Middle Europe (2.1W-27.4E, 40.6N-55.7N) with horizontal resolution 4.7 km. The vertical
resolution is fixed at 87 unequally spaced vertical levels covering the troposphere and then loosely
the stratosphere up to 0.1 hPa. It is coupled every 3 hours with the ARPEGE forecast on its lateral
boundaries.

The assimilation system at CHMI consists of a surface data assimilation (based on OI), the DF
(Digital Filter) Blending [2] and 3D-Var assimilation scheme called together as BlendVar system [12].
This assimilation system uses a six-hour forward intermittent cycle, where the six-hour forecast from
the previous cycle is used as a first guess. This guess is enhanced by surface data assimilation which
updates surface parameters in a surface model scheme. In upper-air the long scales are blended with
the global analysis from ARPEGE using DF Blending [2] as the global model is able to capture the
long-scale synoptic waves more accurately than the limited area model. This background field is
subsequently improved by observations in the upper-air data assimilation scheme which provides the
best initial conditions for the following 6h-forecast. The BlendVar scheme is performed at 00, 06, 12
and 18 UTC.

The Mode-S MRAR involve around 140.000 per day (66% above 6000 meters) and a typical re-
porting frequency is 10 s. This observations are collected in the current assimilation scheme within
±1.5 hour (3h-assimilation window) around the analysis time.The MRAR observations used actively
in data assimilation are pre-selected by the white list described more in details in [7]. This white list
was prepared during the period July till October 2015 and includes a list of 203 aircrafts with reliable
observations. Currently, there is used 50 km horizontal thinning and no vertical thinning for aircraft
observations in the Aladin-CZ model. The vertical profile of observation errors for AMDAR data is
applied also for MRAR supposing that both aircraft types have similar platforms. The quality and
distribution of the AMDAR and MRAR observations is described in [7].
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3 Diagnostic of spatial error correlations
Data

The spatial error correlations are estimated for
MRAR observations based on Eq. 4 and Eq. 3. All
possible do

b and do
a pairs are binned by separation

distance using a binning interval of 10 km (horizon-
tal) and 4 hPa (vertical). The observations in each
pair are less than 1 hour apart from background
or analysis. The horizontal error correlations are
diagnosed at specific pressure levels (±2 hPa) that
correspond approximately to aircraft flight levels
between 150 − 300 hPa (see Fig 1). The vertical
error correlations are diagnosed based on the pairs
collected between 400− 950 hPa where the ascend-
ing/descending legs of the flights provide a suitable
observation sample.
The background/analysis departures were taken
from the 3D-Var assimilation system, using only
data that were actively assimilated and pass the
quality control checks. For this diagnostic purpose,
the Mode-S data are assimilated with 5-km hori-
zontal thinning to get the 5-km minimum separa-
tion distance. The diagnostics are evaluated for a
summer (05 Jul - 30 Jul 2015) and a winter period
(25 Feb - 25 Mar 2016) to include some seasonal
variations in the statistics. Figure 1: The observation number of

MODE-S for pressure levels between 400-150
hPa.

Results

The horizontal observation error correlations as a function of separation distance are examined for
the selected pressure levels 187 ± 2 hPa, 216 ± 2 hPa, 264 ± 2 hPa, 276 ± 2 hPa, 300 ± 2 hPa and
392 ± 2 hPa in Fig 2. Firstly, note that a number of observation pairs decreases with the separation
distance more significantly below the pressure level ∼ 250 hPa (compare the top and bottom Fig 2)
where the flight levels are replaced by ascending/descending legs of the flight. Secondly, the horizontal
error correlations increase below the separation distance 25 − 35 km detected for the levels between
150− 250 hPa. The higher error correlations are also detected between 300− 400 hPa, however, this
error correlation increase is probably affected by the less observation sample in these levels. In the
lower-troposphere,the horizontal error correlations are neglected due to ascending/descending legs of
a flight. Following the paper [10], the optimal analysis corresponds to the error correlations that are
less than 0.2 for temperature variable. It corresponds to the MRAR horizontal data thinning between
25− 35 km.

The vertical observation error correlations as a function of altitude distance are shown in Fig 3. The
vertical error correlations are for temperature around 0.2 and this value increases since the separation
distance is less than 18 hPa. Than we estimate the optimal vertical thinning distance between 15−20
hPa.
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Figure 2: Estimates of horizontal observation error correlations based on Desroziers diagnostic (top) and the
number of a collocations (bottom) as a function of separation distance for MODES-S observations.

Figure 3: Estimates of vertical observation error correlations based on Desroziers diagnostic (top) and the
number of a collocations (bottom) as a function of separation distance for MODES-S observations.

3.1 Spatial data thinning

Following the results of the spatial observation error correlation in Sec 1.3 we investigated the impact
of the both horizontal and vertical thinning of MRAR data on the weather forecast. Technical details
of setting of the data thinning in 3D-VAR Aladin system are described in Appendix A. At the moment
the same thinning distance is applied for both MRAR and AMDAR observations since these types
have not been distinguished (technically) in the current assimilation system yet. Consequently, we
examine the mixed forecast impact of MRAR and AMDAR observations (called aircraft observations).
The observation number reduction using horizontal and vertical thinning is shown for AMDAR and
MRAR observation in Fig 4. Note that the higher data reduction is detected for MRAR than AMDAR
observations. While the horizontal thinning reduces the aircraft observations between 200− 700 hPa
(the left Fig 4), the vertical thinning reduces the observations between 500−850 hPa (the right Fig 4).
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Figure 4: Reduction of aircraft observations using horizontal and vertical thinning. From left: horizontal
thinning for MRAR, AMDAR and vertical thinning for MRAR, AMDAR. The data are collected at all analysis
times for 6 days period.

Horizontal thinning

The impact of horizontal thinning on analysis and subsequent forecast is examined for the period 25
Feb - 05 Mar 2016. We thin the aircraft data to an approximately distance 5 km (MAosTh5), 25 km
(MAosTh25), 50 km (MAosTh50) and 100 km (MAosTh100). In Fig 5 is shown the impact of the
thinning distance setting on RMSE of analysis (top) and 3-h forecast (bottom) with respect to MRAR
observation. In analysis, we detected a positive impact of 5-km data thinning since the analysis is
verified against MRAR data. On the other hand, the negative impact on analysis is detected since
we verify against TEMP observation (not shown). This affirms the hypothesis that the aircraft data
could improve analysis locally, however, the signal propagation through isotropic and homogeneous
B-matrix could worse the quality of analysis outside the observation points [5]. Consequently, the
analysis impact is irrelevant in terms of analysis quality and the relevant information could provide
a short-term forecast, at which observation increments are well balanced (after 3-hours spin up) with
the model state. The 3-h forecast impact of horizontal thinning is shown in the bottom Fig 5. The
negative impact of the 5-km thinning is detected in the upper-troposphere (200 − 300 hPa), while
slight positive impact on the temperature and wind speed forecast (RMSE) is detected for the 25-km
thinning. These results are in agreement with the study of the spatial observation error correlations
in Sec 3, where the 25− 35 km thinning distance was estimated as low-threshold provided an optimal
analysis.

Vertical thinning

The forecast impact of vertical thinning is examined for the period 11 Aug - 16 Aug 2015. We thin
the aircraft data to an approximately distance of either 15 hPa or 5% pressure difference, whichever
is smallest (see the left Fig 4). It allows to reduce the use of excessive ascend/descend measurements
near airports. The positive effect of vertical thinning is detected for the 3-h forecast of the wind speed
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Figure 5: The RMSE impact of 5-km (black), 25-km (green), 50-km (red) and 100-km (yellow) thinning
distance on analysis (top) and the 3-h forecast (bottom) with respect to MRAR.

and wind direction profile (see Fig 6). In terms of the long-term 3− 6 h forecast, we detect a positive
impact on the RMSE of wind speed between 500− 1000 hPa verified with respect to MRAR (Fig 7)
and TEMP (not shown) observations.

9



Figure 6: The impact of vertical thinning on the relative change of RMSE for 3-h forecast. The scores are
computed with respect to MRAR observation.

Figure 7: The impact of vertical thinning up to 6h forecast ranges for the pressure level 700 hPa. The scores
are computed with respect to MRAR observation.

4 Diagnostic of observation error
The observation errors included in diagonalR are estimated by Desroziers method [11] for the AMDAR
and MRAR observations. The scores are evaluated for the three months period 01 Jul - 30 Sep 2015.

The observation error estimations are shown in Fig 8. Note that the errors estimated by the
Desroziers (solid line) are similar between the both aircraft types. Slight differences are detected
for the temperature profile and for wind components below 850 hPa. The latter difference of the
estimated error could be explained by less MRAR observation number (below 850 hPa) so that the
convergence of the error estimation is slower (for more detail see Appendix B). Whereas in the higher-
troposphere, the error-estimations are over-estimated probably due to the violation of the Desroziers
method assumptions (1) namely the independence between observation and background error. The
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observation errors assumed in the 3D-Var Aladin-CZ (dotted line) have similar shape as the Desroziers
error, but about 30% overestimated.

As a result, the same observation error setting might be used for the both AMDAR and MRAR
observations. Furthermore, it would be desirable to use more iterations in the Desroziers method to
improve the observation error estimation in the higher-troposphere and near the surface (for more
details see Appendix B).

Figure 8: Observation error estimations for the AMDAR (red) and MRAR (blue) measurements based on
Desroziers method (solid) and the observation error assumed in the 3D-Var Aladin-CZ system (dotted). In
addition the systematic errors (dashed) are detected. The scores are computed for the CZ domain.

In addition, the bias values (mean of do
b) for AMDAR and MRAR observations are shown in Fig 8

(dashed line). There is a similar bias between the both aircrafts for the both wind-components and
a slight increase is detected for the MRAR data for temperature in the lower-troposphere. The in-
vestigation of the bias value between Prague and Vienna airports provides high variations in vertical
profiles (not shown). This error variations are probably caused by a different conditions near surface
such as vegetation and orography or the biases could also depend on aircraft types [4].

4.1 Observation error inflation

An optimal observation error inflation is examined for the AMDAR and MRAR observations with
regards to a forecast quality. The error inflation is handled by sigma coefficient through screening
namelist that represents a multiplication factor to observation error setting in the assimilation scheme.
The sigma coefficient is increased from ∼ 0.7 (default sigma setting in the 3D-VAR Aladin-CZ) to
5 by the step 0.7. The sigma coefficient is changed for the both AMDAR and MRAR observations
supposing that their observation error is similar (see Fig 8). The forecast quality is evaluated for various
sigma setting of the AMDAR/MRAR observations. This study is based on assimilation experiments
performed during 10-days period (25 Feb - 5 Mar 2016).

The forecast impact of the various sigma coefficients is evaluated with respect to AMDAR observa-
tions. In Fig 9, there are the overall RMSE scores for the 3-6h forecasts and all vertical levels between
150−950 hPa for temperature (T), wind speed (WS) and wind direction (WD). The minimum forecast
error (minimum RMSE score) is detected for the sigma coefficient around 2. Note that the current
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Figure 9: The RMSE scores for the 3-6h forecast and all levels between 150− 950 hPa with regards to various
sigma coefficients. The scores are evaluated against AMDAR observations.

sigma setting in Aladin-CZ (∼ 0.7) provides the degradation of forecast. Similar results are detected
when we verify against MRAR and TEMP observations (not shown).

5 The tuned assimilation scheme: Forecast impact study
Following the results in the sections 3.1 and 4.1, we modify the spatial data thinning and observation
error inflation for MRAR and AMDAR in the 3D-VAR Aladin-CZ system. The forecast impact is
examined for 20-days period 25 Feb - 15 Mar 2016. We run the 6 hour assimilation cycle with +48
hours forecast production run at analysis times 6 and 12 UTC. The experimental settings are described
in the following table. The forecast impact is evaluated with regards to TEMP, AMDAR and MRAR
observations. We use two verification domains over LACE (computational domain Aladin-CZ) and
over an extended CZ domain (ext-CZ). The ext-CZ domain is set with regards to the coverage of
MRAR observations [7]. This ext-CZ domain is well-covered by AMDAR and MRAR at the upper
levels, whereas there are limited TEMP observations available at 00, 12 UTC (12 stations) and even
less at 06 and 18 UTC (5 stations).

Experiment Assimilated data Horizontal thin Vertical thin Inflation factor
MAconv conv, amdar, mrar 50 km no ∼ 0.7
MAconv_new conv, amdar, mrar 25 km 15 hPa 2
Aconv_new conv, amdar 25 km 15 hPa 2
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The forecast impact of the tuned 3D-VAR system is assessed comparing MAconv and MAconv_new
experiments over the LACE domain. The RMSE (top) and MAE (bottom) scores are evaluated with
respect to TEMP in Fig 10. We detect a significant positive impact of the tuned system (MA-
conv_new) on the relative humidity (RH), T, WS and WD forecast up to 1-2 days for the whole
vertical profile. This positive impact is detected for T and WS mostly in the upper-troposphere (be-
tween 200-300 hPa), whereas the short-range forecast improvement (up to 12 hours) is detected in the
middle- and lower-troposphere.

The impact of MRAR data for the tuned system is assessed comparing Aconv_new and MA-
conv_new experiments over the ext-CZ domain. The RMSE (top) and MAE (bottom) forecast impact
of MRAR is evaluated with respect to TEMP (see Fig 11) and AMDAR (see Fig 12) observations. The
both verifications have common the positive impact on WS and WD forecast up to 36 hours (between
300 − 400 hPa). On the other hand, the differences between the AMDAR and TEMP verifications
are detected for T and WS in upper- (250-400 hPa) and lower-troposphere (700-850 hPa). In the
low-troposphere, the positive impact on T and WS up to 12 hours is detected only against AMDAR
(not against TEMP). This could be explain by the location of aircraft data around airports in the
lower-troposphere since there dominate the ascending/descending legs of flights. In the upper tropo-
sphere, we detected positive impact on T up to 12 hours against AMDAR (see Fig 12), however, there
is negative impact on T against TEMP (see Fig 11). This inconsistency could be explain by a warm
bias in TEMP data caused by the radiosonde balloon drift in upper levels [6] that is not considered
in the Aladin-CZ verification.
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Figure 10: The forecast impact of AMDAR and MRAR data assimilation before and after a tuning the 3D-
VAR assimilation system. The RMSE (top) and MAE (bottom) scores are evaluated with regards to TEMP
observation. The improvement/degradation is represented by blue/red color. The white points represents 95%
significance level.
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Figure 11: The forecast impact of MRAR data assimilation for the tuned 3D-VAR assimilation system.
The RMSE (top) and MAE (bottom) scores are evaluated with regards to TEMP observation. The improve-
ment/degradation is represented by blue/red color. The white points represents 95% significance level.
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Figure 12: The forecast impact of MRAR data assimilation for the tuned 3D-VAR assimilation system. The
RMSE (top) and MAE (bottom) scores are evaluated with regards to AMDAR observation. The improve-
ment/degradation is represented by blue/red color. The white points represents 95% significance level.
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6 Conclusion
In the current operational assimilation systems at the CHMI, all observation error correlations are
assumed to be zero. This is a reasonable assumption for pairs of observations measured by distinct
instruments, however, this assumption is entirely inaccurate for the observations that are available
at higher spatial coverage than the model resolution. The aircraft Mode-S MRAR observations have
been studied in detail in Aladin-CZ since 2015 [7]. According to this study, the forecast impact of
MRAR data have been assessed as almost neutral (against AMDAR and TEMP), slightly positive in
lower troposphere with regards to MRAR data. The aim of this study was to propose new changes in
3D-Var assimilation scheme that provide better treatment of aircrafts data in Aladin-CZ. We propose
new changes in data thinning and observation error inflation for AMDAR/MRAR data that are often
used in conjunction with the assumption of zero error correlations [8], [9].

In Sec 3, we studied horizontal and vertical observation error correlations of MRAR data to find
an optimal thinning distance. These spatial error correlations are diagnosed by Desroziers method
[11]. The error correlations are examined as a function of separation distance for the selected pres-
sure levels in Fig 2 and Fig 3, respectively. The optimal horizontal and vertical thinning distance is
estimated with regards to the threshold error correlation value of around 0.2 that was proposed by
[10] for temperature parameter. Following this guidance we suggested the optimal thinning distance
between 25 − 35 km in horizontal and 15 − 20 hPa in vertical. As a result, we use about 11% of
the MRAR data that are available at each analysis time over the extended CZ domain. The forecast
impact of 25-km horizontal and 18-hPa vertical thinning is shown in Fig 5 and Fig 6, respectively. The
25-km horizontal thinning improved significantly the 3-6 h forecast of the temperature and wind speed
profiles (see Fig 5). Applying vertical thinning has significant positive impact on the 3-h forecast of
the wind speed and wind direction vertical profiles (see Fig 6) and the impact was also detected for
the 6-h forecast of the temperature and wind speed around 700 hPa (Fig 7).

In Sec 4, the observation error inflation is studied for AMDAR and MRAR data. The observation
error inflation determines a weighted importance of measurements in analysis and it could be handled
by sigma coefficient through the screening namelist setting.

Firstly, we estimated the observation error by the Desroziers method. We found out that the error
estimations are similar between the both AMDAR and MRAR data (see Fig 8) so that we supposed
to keep the same observation error settings for them in the 3D-VAR Aladin-CZ.

Secondly, an optimal error inflation is examined for the AMDAR and MRAR observations with
respect to the forecast quality. The error inflation was changed through sigma coefficient from 0.7
(default sigma setting in 3D-VAR Aladin-CZ) to 5 by the step 0.7. The optimal value was examined
with respect to the forecast quality (see Fig 9). As a result, the optimal value of sigma coefficient for
AMDAR and MRAR observations is found around 2. This value is far away from the sigma coefficient
corresponding to Desroziers error estimation (∼ 0.6) as well as the current setting of sigma in 3D-Var
Aladin-CZ (∼ 0.7). The difference could be explained by:

• the violation of the Desroziers main assumptions

• simplification the Desroziers method by one-iteration only

• sigma coefficient was not tuned with respect to background error

• simplified B matrix supposing homogeneous and isotropic propagation of observation increments

Applicability of the Desroziers diagnostic for estimating of observation errors is still subject of research.
Better understanding of the above mentioned issues would be essential to avoid getting mis-leading
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results. Consequently, we decided to use the sigma coefficient 2 as the optimal error inflation suppos-
ing that the forecast impact study provides the best empirical solution for tuning assimilation system.

Finally, we examined the forecast impact study of new data thinning (25-km horizontal and 18-hPa
vertical distance) and error inflation (sigma set to 2) for AMDAR and MRAR data (called as tuned
system). The tuned system for AMDAR/MRAR had positive impact on wind speed (200− 450 hPa)
and temperature (450− 850 hPa) forecast (RMSE, MAE) up to 1-2 days. The impact of MRAR data
only (not AMDAR) provided positive impact on T, WS and WD forecast in upper-troposphere (250-
400 hPa) up to 9-12 hours (Fig 12). We detect also positive impact of MRAR in lower-troposphere
(700-850 hPa), however, this improvement was probably very local since it was not detected with
regards to TEMP observation (Fig 11).

The high spatial frequency measurements such as MRAR provide high-resolution representation
of the current state of the atmosphere that is needed as initial condition for the NWP models. Based
on the results there are two main issues that limit the assimilation of the high-resolution data in the
3D-VAR Aladin-CZ system namely simplified observation (R) and background (B) covariance error
matrix. The assumption of zero error correlations in the R matrix reduces the spatial data sample
(through data thinning) that could be assimilated in analysis. The simplified B matrix supposing
homogeneous and isotropic propagation of observation increments beyond the observation points could
limit the weight of observations in analysis in order to keep the signal as local as possible. Under those
circumstances, the MRAR observation number is reduced to such an extent that the forecast impact
of MRAR on the top of AMDAR is unexpectedly slight. Investigation of a local ensemble B matrix as
well as observation error covariance matrix R is desirable in terms of the high-resolution Aladin-CZ
model.
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A Spatial data thinning
Concerning the thinning of aircraft data it is important to know that one aircraft flight consists of a
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the RMFIND_AIREP variable in the NAMSCC namelist. The horizontal thinning is controlled by
the screening namelist variable:

RFIND_AIREP=0.5675*RA/RDEGREES

The vertical thinning is controlled by the variables

RAIREPTHIN, RAIREPPCENTTHIN, RAIREPTOPPRES.

These can be set to zero by the user if no vertical thinning is required.

B Desroziers method behavior
We investigate the behavior of the Desroziers method described in Sec 1.3. Statistical approximation
of the observation error can be find provided that observation and background errors are mutually
uncorrelated (1). Following the results with simple 1-D model (Strajnar, 2010), we examined how
observation error correlation and the number of iterations can influence the estimated observation
error.

The observation error correlations are control by the data thinning distance. The sparser data are
the less error-correlations appear. The dependence of the estimated observation error on data thinning
is shown for MODE-S in Fig 13. Note that for observation error is significantly under-estimated for
the 5-km data thinning, while using the higher thinning distance then 25-km the observation error
correlation could be almost neglected. These results are in agreement with the observation error
correlations separated by observation distance in Fig 2.

Figure 13: The behavior of Desroziers observation error estimation with regard to 5-, 25-, 50- and 100-km
data thinning.

The Desroziers method is an iterative method. One should redo the analysis with new estimated
observation error to obtain new estimates. However, it has been shown by Desroziers et al. (2005) that
the iteration converges quickly and so the first estimate is not too far from the final converged value.
Moreover, the speed of convergence increases with the number of observations (Chapnik et al., 2004).
The behavior of observation errors estimation after first two iterations is shown for MODE-S (top) and
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AMDAR (bottom) in Fig 14. The initial observation error is represented by the error assumed in the
3D-Var system (dashed line), while the first (red) and second (green) error-estimates are diagnosed
by Desroziers method. Note that the both iterations are very close to each other comparing to the
initial error-value. In addition, we include the first-error estimation diagnosed by Desroziers for the
long-term 3 month period (blue) to confirm the increase of the speed of convergence. Note that the
larger observation number provide more accurate first-iteration error-estimate, but this estimation is
still overestimated comparing to the second-iteration estimate. Based on these results, first-iteration
estimate provide a good first estimation of observation error, however, it could be still far away from
the real observation error. Moreover this problem could be enhanced by the violation of the Desroziers
method assumptions in (1).

Figure 14
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