A complexity of entrainment and detrainment processes in "directly-simulated" plumes

Harm Jonker

contributions by:

TUD: Maarten Sanders, Thijs Heus, Pier Siebesma NCAR: Peter Sullivan, Don Lenschow

Clouds Climate and Air Quality

Small Cumulus Microphysics Study, 1995

NCAR: C-130

Stefaan Rodts (IMAU/TUD)

Descending Shells in Observations

recently: observations by Siebert et al. 2007 (helipod)

debate about the origin of the shell

Landsat image 65km

Thijs Heus

Large Eddy Simulation resolution 10m

Cloud Topped Boundary Layer: Cumulus

Courtesy Dylan Dussel, TUD

Courtesy Thijs Heus

LES results for SCMS and BOMEX

Heus and Jonker, JAS 2007

Heus and Jonker, JAS 2007

negative mass-flux in the shell could be significant!

mass-flux = velocity x area

area $2\pi r \Delta r$

 $m(r)\Delta r = 2\pi r\Delta r w(r)$

cloud mass-flux: $M_c = \sum_C w(i, j)$ $C = \{i, j \mid q_l(i, j) > 0\}$ env mass-flux: $M_E = \sum_E w(i, j)$ $E = \{i, j \mid q_l(i, j) = 0\}$ $M_C + M_E = \sum_{E \otimes C} w(i, j) = \sum w(i, j) = 0$

e.g. Siebesma and Cuijpers, JAS 1995

$i \rightarrow$																		
	6	5	4	3	2	1	2	3	4	5	6	7	6	6	5	5	6	7
	5	4	3	2	1	-1	1	2	3	4	5	6	5	5	4	4	5	6
	4	3	2	1	-1	-2	-1	1	2	3	4	5	4	4	3	3	4	5
	3	2	1	-1	-2	-3	-2	-1	1	2	3	4	3	3	2	2	3	4
	3	2	1	-1	-2	-2	-2	-1	1	2	3	3	2	2	1	1	2	3
	4	3	2	1	-1	-1	-1	1	2	3	3	2	1	1	-1	-1	1	2
\uparrow	5	4	3	2	1	1	-1	1	2	3	2	1	-1	-2	-2	-2	-1	1
j	6	5	4	3	2	2	1	2	3	4	3	2	1	-1	-2	-1	1	2
	7	6	5	4	3	3	2	3	4	5	4	3	2	1	-1	1	2	3
	8	7	6	5	4	4	3	4	5	6	5	4	3	2	1	2	3	4

mass-flux density:

$$m(r) = \sum_{I_r} w(i, j)$$
 $I_r = \{i, j \mid d(i, j) = r\}$

$$M_{c} = \int_{-\infty}^{0} m(\mathbf{r}) d\mathbf{r} \qquad M_{E} = \int_{0}^{\infty} m(\mathbf{r}) d\mathbf{r} \qquad \int_{-\infty}^{\infty} m(\mathbf{r}) d\mathbf{r} = 0$$

mass-flux density:

$$m(r) = \sum_{I_r} w(i, j)$$
 $I_r = \{i, j \mid d(i, j) = r\}$

$$M_{c} = \int_{-\infty}^{0} m(\mathbf{r}) d\mathbf{r} \qquad M_{E} = \int_{0}^{\infty} m(\mathbf{r}) d\mathbf{r} \qquad \int_{-\infty}^{\infty} m(\mathbf{r}) d\mathbf{r} = 0$$

Conditional Averages

 $N(r) = |I_r|$ nr of grid points with d(i,j)=r

$$w(r) = \frac{1}{N(r)} \sum_{I_r} w(i, j)$$

average velocity of points with d(i,j)=r

example average velocity of points with d(i,j)=3

$$w(3\Delta) = \frac{1}{N(3\Delta)} \sum_{I_{r=3}} w(i, j)$$

 $I_3 = \{i, j \mid d(i, j) = 3\}$

Traditional view

Jonker, Heus, Sullivan, GRL 2008

- is it conceivable? (mechanism)
- is it true? (observational validation)
- is it relevant? (applications)

w-budget vs distance to nearest cloud-edge

- is it conceivable? (mechanism)
- -> is it true? (observational validation)
- is it relevant? (applications)

Rain in Cumulus over the Ocean: Observations and LES

courtesy Bjorn Stevens

How far is the nearest cloud?

LES 2D-distances

 $s_{\rm m} = 10^{-3}$ $s_{\rm m} = 10^{-3}$ $s_{\rm m}$

mass-flux densities m(r)

LES 1D-distances

- " two examples:
- dispersion
- parameterization (mass-flux model)

plume 'trapping'

courtesy S. Galmarini

Virtual Reality Lab

NWO/NCF

EWI:F. Post, M. Koutek, E. Griffith, D. Dussel

dispersion of a plane source of mass-less particles

Verzijlbergh et al 2009, ACP

Verzijlbergh et al 2009, ACP

Mass-flux models of shallow cumulus

top-hat distribution

A refined view on Mass-flux models of shallow cumulus 1) cloud, 2) near cloud env. 3) far field

Asai and Kasahara, JAS, 1967

...

Ogura and Takahashi, *Mon Wea Rev* 1971 Cotton, *JAS*, 1975

Ferrier and Houze, JAS, 1988
Asai and Kasahara, JAS, 1967

Asai and Kasahara's model+ extra ring

back to LES for a second ...

Model geometric parameters

3 parameters determine the geometry of the model, during the sensitivity analysis they were fixed at the following values:

Parameter	Value
Cloud radius r ₁	100m
Cloud cover σ_1	5%
Rel. shell size ζ	0.5
$r_2 = r_1(\zeta + 1)$	
$r_3 = \frac{r_1}{\sqrt{\sigma_1}}$	
$\boldsymbol{\sigma}_2 = \boldsymbol{\sigma}_1 \underbrace{\boldsymbol{\sigma}_2}_{\boldsymbol{\mathbf{x}}} + 1 \big)^2 - 1$	
$\sigma_3 = 1 - \sigma_1 - \sigma_2$	

Model Description

" Model Equations derived from the Navier-Stokes equations in the Boussinesq-approximation:

$$\frac{u_i}{\vartheta t} + \frac{\Pi}{x_j} \left(u_j u_i \right) = -\frac{1}{\rho} \frac{p}{x_i} + \delta_{i3} \frac{g}{0} \left(\theta_v - \overline{\theta_v} \right)$$

" And the continuity equation:

$$\frac{\Box u_j}{\Pi k_j} = 0$$

" scalar transport

$$\frac{\partial}{\partial t}\varphi + \frac{\partial}{\partial x_j}(u_j\varphi) = F_{\varphi}$$
$$\varphi = \{\theta_l, q_t\}$$

$$2\pi \int_{r_{n-1}}^{r_n} \varphi \, r dr = \overline{\varphi}^n \, A_n \qquad A_n = \pi (r_n^2 - r_{n-1}^2)$$

$$\frac{\partial}{\partial t}\varphi + \frac{1}{r}\frac{\partial}{\partial r}(ru\varphi) + \frac{\partial}{\partial z}(w\varphi) = F_{\varphi}$$

$$2\pi \int_{r_{n-1}}^{r_n} \varphi \, r dr = \overline{\varphi}^n \, A_n \qquad A_n = \pi (r_n^2 - r_{n-1}^2)$$

$$\frac{\partial}{\partial t}\varphi + \frac{1}{r}\frac{\partial}{\partial r}(ru\varphi) + \frac{\partial}{\partial z}(w\varphi) = F_{\varphi}$$

 $2\pi \int \varphi r dr = \overline{\varphi}^n A_n$ $A_{n} = \pi (r_{n}^{2} - r_{n-1}^{2})$ r_{n-1} $\frac{\partial}{\partial t}\varphi + \frac{1}{r}\frac{\partial}{\partial r}(ru\varphi) + \frac{\partial}{\partial z}(w\varphi) = F_{\varphi}$ $\overline{\varphi}^{n-1} \overline{\varphi}^{n} \Big]$ $\widetilde{\varphi}^{n-1} \widetilde{\varphi}^{n}$ $\frac{\partial}{\partial t}\overline{\varphi}^{n} + \frac{2\pi r_{n}}{A}\overline{u}\overline{\varphi}^{n} - \frac{2\pi r_{n-1}}{A}\overline{u}\overline{\varphi}^{n-1} + \frac{\partial}{\partial z}\overline{w}\overline{\varphi}^{n} = \overline{F}_{\varphi}^{n}$

 $\widetilde{u} \overrightarrow{\varphi}^{n} = \widetilde{u}^{n} \widetilde{\varphi}^{n} + \widetilde{u}^{''} \overrightarrow{\varphi}^{''} \qquad \overline{w} \overrightarrow{\varphi}^{n} = \overline{w}^{n} \overline{\varphi}^{n} + \overline{w^{'} \varphi^{'}}^{n}$

$$\frac{2\pi r_n}{A_n}\widetilde{u}^n - \frac{2\pi r_{n-1}}{A_n}\widetilde{u}^{n-1} + \frac{\partial}{\partial z}\overline{w}^n = 0$$

$$\frac{\partial}{\partial t}\overline{w}^{n} = \dots + \frac{g}{\Theta_{0}} \left(\overline{\theta}_{v}^{n} - \left\langle \theta_{v} \right\rangle\right)$$
$$\frac{\partial}{\partial t}\overline{q}_{t}^{n} = \dots$$
$$\frac{\partial}{\partial t}\overline{\theta}_{l}^{n} = \dots$$
$$n = 1, 2, 3$$

Initial conditions: Bomex-LES

ŤUDelft

Bomex

Shell vertical velocity

environment

environment

environment

Shell vertical velocity

Entrainment/Detrainment

simple cloud mixing models

$$\frac{d}{dz}q_t^c = -\varepsilon(q_t^c - \overline{q}_t)$$

$$\varepsilon = \frac{\frac{d}{dz}q_t^c}{(\overline{q}_t - q_t^c)}$$

$$\delta = \varepsilon - \frac{1}{M} \frac{d}{dz} M$$

diagnose from LES or observations

(Siebesma and Cuijpers, 1995)

$$\varepsilon \sim 10^{-3} m^{-1}$$

Entrainment/Detrainment

Siebesma et al JAS 2003 LES conditional sampling

FIG. 9. Fractional entrainment rate ε and detrainment rate δ diagnosed using (10)–(11) for $\phi = q_i$ (solid line) and $\phi = \theta_i$ (dashed line).

ÍUDelft

Cloud Size (r₁)

- " The size of the cloud affects the maximum height of cloud
- " Maximum height is also limited by the inversion height

Bulk model:

Cloud ensemble:

approximated by

1 effective cloud:

e.g. Neggers et al, JAS 2003

Bomex, intercomparison Siebesma et al, 2003

entrainment versus lateral cloud size

cloud height versus lateral cloud size

Conclusions

- " A refinement of the conceptual view may be useful
- " Importance of cloud-edge processes on vertical transport
- " Cloud mass-flux is compensated in the immediate proximity of shallow cumulus clouds.
- " 'Far field' is very quiet (no downward vertical transport)
- " Important for understanding the dispersion characteristics in shallow Cu
- " Improve mass-flux parameterizations?

Multi-Scale Physics Faculty of Applied Sciences

TUDelft

generalized AK'67 model

- " descending shell is formed
- " balance between shear, mixing of momentum, negative buoyancy
- " entrainment/detrainment need not be prescribed
- " small clouds are less tall
- " improvements:
- " cloud-shape (e.g. Ferrier and Houze 1988)
- " pressure-fluctuations
- 11

Multi-Scale Physics Faculty of Applied Sciences

