pTKE *Pseudo-prognostic TKE scheme*

۲

Jean-François Geleyn, Jure Cedilnik, Filip Váňa, Andé Simon, Radmila Brožková, Martina Tudor and Bart Catry

• Louis type scheme (*K*-closure)

- explicitly resolves the boundary layer
- in analogy with molecular diffusion assumes the fluxes proportional to gradients:

$$\overline{w'X'} = -K_{M/H} \frac{\partial X}{\partial z}, \quad X = u, v, s, q$$

• values of $K_{M/H}$ are diagnosed at every time-step

• Louis type scheme (*K*-closure)

- explicitly resolves the boundary layer
- in analogy with molecular diffusion assumes the fluxes proportional to gradients:

$$\overline{w'X'} = -K_{M/H} \frac{\partial X}{\partial z}, \quad X = u, v, s, q$$

- values of $K_{M/H}$ are diagnosed at every time-step
- performs well for scales of 10 km

• Louis type scheme (*K*-closure)

- explicitly resolves the boundary layer
- in analogy with molecular diffusion assumes the fluxes proportional to gradients:

$$\overline{w'X'} = -K_{M/H}\frac{\partial X}{\partial z}, \quad X = u, v, s, q$$

- values of $K_{M/H}$ are diagnosed at every time-step
- performs well for scales of 10 km
- allows simple shallow convection parameterization

- Louis type scheme (*K*-closure)
 - explicitly resolves the boundary layer
 - in analogy with molecular diffusion assumes the fluxes proportional to gradients:

$$\overline{w'X'} = -K_{M/H}\frac{\partial X}{\partial z}, \quad X = u, v, s, q$$

- values of $K_{M/H}$ are diagnosed at every time-step
- performs well for scales of 10 km
- allows simple shallow convection parameterization
- anti-fibrillation scheme

Shallow convection

Geleyn, 1987

•

ALARO Training Course, Radostovice, March 2007 – p. 3

Shallow convection

Geleyn, 1987

•

 $K_{M/H}$ is computed as:

$$K_{M/H} = l^2(z) \left| \frac{\partial X}{\partial z} \right| f_{M/H}(Ri)$$

Shallow convection

Geleyn, 1987

۲

 $K_{M/H}$ is computed as:

$$K_{M/H} = l^2(z) \left| \frac{\partial X}{\partial z} \right| f_{M/H}(Ri)$$

SC: replace Ri by Ri^* :

$$Ri^* = \frac{g}{C_p T} \frac{\frac{\partial s}{\partial z} + L\min\left(0, \frac{\partial(q-q_s)}{\partial z}\right)}{\left|\frac{\partial \vec{u}}{\partial z}\right|^2}$$

Anti-fibrillation scheme

Bénard et al., 2000

•

Anti-fibrillation scheme

Bénard et al., 2000

•

$$\frac{\partial X}{\partial t}\Big|_{\mathbf{V_diff}} = \frac{\partial}{\partial z} \left(K_{M/H} \frac{\partial X}{\partial z} \right)$$

ALARO Training Course, Radostovice, March 2007 – p. 4

Anti-fibrillation scheme

Bénard et al., 2000

۲

$$\frac{\partial X}{\partial t}\Big|_{\mathbf{V_diff}} = \frac{\partial}{\partial z} \left(K_{M/H} \frac{\partial X}{\partial z} \right)$$

discretized into time-shifted formulation:

$$\frac{X^{+} - X^{0}}{\Delta t} = \left[(1 - \beta)(K_{M/H}X_{z}^{0}) + \beta(K_{M/H}X_{z}^{+}) \right]_{z}$$

To avoid fibrillations $\beta \geq 1$.

based on the current vertical diffusion scheme

- based on the current vertical diffusion scheme
- following extended idea of Redelsperger, Mahe and Carlotti (2001) diagnose the TKE from $K_{M/H}$
 - match full TKE sub-grid scale turbulence scheme and similarity laws at surface
 - extension to the whole atmosphere $(l = \kappa(z + z_0))$

- based on the current vertical diffusion scheme
- following extended idea of Redelsperger, Mahe and Carlotti (2001) diagnose the TKE from $K_{M/H}$
 - match full TKE sub-grid scale turbulence scheme and similarity laws at surface
 - extension to the whole atmosphere $(l = \kappa(z + z_0))$
- replace full TKE equation by a pseudo one converging toward the Louis scheme

- based on the current vertical diffusion scheme
- following extended idea of Redelsperger, Mahe and Carlotti (2001) diagnose the TKE from $K_{M/H}$
 - match full TKE sub-grid scale turbulence scheme and similarity laws at surface
 - extension to the whole atmosphere $(l = \kappa(z + z_0))$
- replace full TKE equation by a pseudo one converging toward the Louis scheme
- modify $K_{M/H}$ according the TKE to obtain space-consistent variation around the static solution

Full TKE equation

Prognostic equation for TKE ($E = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$:

$$\frac{\partial E}{\partial t} + \underbrace{u \frac{\partial E}{\partial x} + v \frac{\partial E}{\partial y} + w \frac{\partial E}{\partial z}}_{\text{advection}} = \underbrace{-\overline{u'w'} \frac{\partial u}{\partial z} - \overline{v'w'} \frac{\partial v}{\partial z}}_{\text{I}}$$

$$- \underbrace{\frac{g}{\varrho_0} \overline{w'\varrho'}}_{\text{II}} \quad \underbrace{-\frac{\partial}{\partial z} \left(\overline{E'w'} + \frac{\overline{p'w'}}{\varrho}\right)}_{\text{III}} \quad \underbrace{-\varepsilon}_{\text{IV}}$$

I = mechanical production/destruction of E by wind shear

- II = production/consumption of E by buoyancy
- III = transport or diffusion terms

IV = dissipation

pTKE equation

Pseudo-prognostic equation for pTKE ($E = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$:

$$\frac{\partial E}{\partial t} + u\frac{\partial E}{\partial x} + v\frac{\partial E}{\partial y} + w\frac{\partial E}{\partial z} = -\frac{\partial}{\partial z}\left(-K_E\frac{\partial E}{\partial z}\right) + \frac{1}{\tau_{\varepsilon}}(\tilde{E} - E)$$

with:
$$\overline{E'w'} + \frac{\overline{p'w'}}{\varrho} = -K_E \frac{\partial E}{\partial z}$$

pTKE equation

Pseudo-prognostic equation for pTKE ($E = \frac{1}{2}(\overline{u'^2} + \overline{v'^2} + \overline{w'^2})$:

$$\frac{\partial E}{\partial t} + u\frac{\partial E}{\partial x} + v\frac{\partial E}{\partial y} + w\frac{\partial E}{\partial z} = -\frac{\partial}{\partial z}\left(-K_E\frac{\partial E}{\partial z}\right) + \frac{1}{\tau_{\varepsilon}}(\tilde{E} - E)$$

with:
$$\overline{E'w'} + \frac{\overline{p'w'}}{\varrho} = -K_E \frac{\partial E}{\partial z}$$

What about K_E , $\tau_{\varepsilon} = E/\varepsilon$ and \tilde{E} ?

•

• $\tilde{K_m}$ and $\tilde{K_n}$ (ACCOEFK)

•

• $\tilde{K_m}$ and $\tilde{K_n}$ (ACCOEFK)

•
$$\tilde{K_*} = R_l \tilde{K_n}^{1-\gamma} \tilde{K_m}^{\gamma}$$
, $\beta_E = \beta_m^{\gamma}$

۲

• $\tilde{K_m}$ and $\tilde{K_n}$ (ACCOEFK)

•
$$\tilde{K_*} = R_l \tilde{K_n}^{1-\gamma} \tilde{K_m}^{\gamma}$$
, $\beta_E = \beta_m^{\gamma}$

•
$$\tilde{E} = \left(\frac{\tilde{K_*}}{\nu^2}\right)^2$$
, $K_E = \frac{l_m}{\nu}\sqrt{E_?}$, $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3\sqrt{E_?}}{l_m}$

۲

• $\widetilde{K_m}$ and $\widetilde{K_n}$ (ACCOEFK)

•
$$\tilde{K_*} = R_l \tilde{K_n}^{1-\gamma} \tilde{K_m}^{\gamma}$$
, $\beta_E = \beta_m^{\gamma}$

•
$$\tilde{E} = \left(\frac{\tilde{K_*}}{\nu^2}\right)^2$$
, $K_E = \frac{l_m}{\nu}\sqrt{E_?}$, $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3\sqrt{E_?}}{l_m}$

۲

• $\tilde{K_m}$ and $\tilde{K_n}$ (ACCOEFK)

•
$$\tilde{K_*} = R_l \tilde{K_n}^{1-\gamma} \tilde{K_m}^{\gamma}$$
, $\beta_E = \beta_m^{\gamma}$

•
$$\tilde{E} = \left(\frac{\tilde{K_*}}{\nu^2}\right)^2$$
, $K_E = \frac{l_m}{\nu}\sqrt{E_?}$, $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3\sqrt{E_?}}{l_m}$

•
$$\frac{\partial E}{\partial t}\Big|_{phy} = \frac{1}{\varrho} \frac{\partial}{\partial z} \varrho K_E \frac{\partial E}{\partial z} + \frac{1}{\tau_{\varepsilon}} (\tilde{E} - E)$$

 $\beta_E \qquad \beta_E \qquad \beta_{\tau=1.5}$

•
$$K_* = \nu l_m \sqrt{E^+}$$

۲

• $\tilde{K_m}$ and $\tilde{K_n}$ (ACCOEFK)

•
$$\tilde{K_*} = R_l \tilde{K_n}^{1-\gamma} \tilde{K_m}^{\gamma}$$
, $\beta_E = \beta_m^{\gamma}$

•
$$\tilde{E} = \left(\frac{\tilde{K_*}}{\nu^2}\right)^2$$
, $K_E = \frac{l_m}{\nu}\sqrt{E_?}$, $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3\sqrt{E_?}}{l_m}$

•
$$\frac{\partial E}{\partial t}\Big|_{phy} = \frac{1}{\varrho} \frac{\partial}{\partial z} \varrho K_E \frac{\partial E}{\partial z} + \frac{1}{\tau_{\varepsilon}} (\tilde{E} - E)$$

 $\beta_E \qquad \beta_E \qquad \beta_{\tau=1.5}$

•
$$K_* = \nu l_m \sqrt{E^+}$$

•
$$K_m = K_*(\tilde{K_m}/\tilde{K_*})$$
, $K_h = K_*(\tilde{K_h}/\tilde{K_*})$,

Oscillatory tests -X(t - dt) + 2X(t) - X(t + dt)

• $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3 \sqrt{E}}{l_m}$ - Impact at low atmosphere: \tilde{E} option offers less stability.

۲

Oscillatory tests -X(t - dt) + 2X(t) - X(t + dt)

- $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3 \sqrt{E}}{l_m}$ Impact at low atmosphere: \tilde{E} option offers less stability.
- $K_E = \frac{l_m}{\nu} \sqrt{E}$ Impact at high atmosphere (above PBL): the use of \tilde{E} is significantly less stable.

۲

Oscillatory tests -X(t - dt) + 2X(t) - X(t + dt)

- $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^{3}\sqrt{E}}{l_{m}}$ Impact at low atmosphere: \tilde{E} option offers less stability.
- $K_E = \frac{l_m}{\nu} \sqrt{E}$ Impact at high atmosphere (above PBL): the use of \tilde{E} is significantly less stable.
- Iterative computation of \tilde{K}_* Almost no sensitivity. Few points improved, bit more deteriorated by iteration \Rightarrow no iteration to compute \tilde{K}_*

۲

Oscillatory tests -X(t - dt) + 2X(t) - X(t + dt)

- $\frac{1}{\tau_{\varepsilon}} = \frac{\nu^3 \sqrt{E}}{l_m}$ Impact at low atmosphere: \tilde{E} option offers less stability.
- $K_E = \frac{l_m}{\nu} \sqrt{E}$ Impact at high atmosphere (above PBL): the use of \tilde{E} is significantly less stable.
- Iterative computation of \tilde{K}_* Almost no sensitivity. Few points improved, bit more deteriorated by iteration \Rightarrow no iteration to compute \tilde{K}_*
- SLHD or QM for sL advection SLHD together with QM slightly less stable.

۲

• two tuning parameters: $\tilde{K}_* = R_l \tilde{K}_n^{1-\gamma} \tilde{K}_m^{\gamma}$ (GAMTKE=0.5), ν (NUPTKE=0.52)

- two tuning parameters: $\tilde{K}_* = R_l \tilde{K}_n^{1-\gamma} \tilde{K}_m^{\gamma}$ (GAMTKE=0.5), ν (NUPTKE=0.52)
- three level stencil in the vertical for the Newtonian relaxation ($1/\tau_{\varepsilon}$ are on half levels)

- two tuning parameters: $\tilde{K}_* = R_l \tilde{K}_n^{1-\gamma} \tilde{K}_m^{\gamma}$ (GAMTKE=0.5), ν (NUPTKE=0.52)
- three level stencil in the vertical for the Newtonian relaxation ($1/\tau_{\varepsilon}$ are on half levels)
- relaxation and diffusion are computed at once
 tridiagonal matrix

- two tuning parameters: $\tilde{K}_* = R_l \tilde{K}_n^{1-\gamma} \tilde{K}_m^{\gamma}$ (GAMTKE=0.5), ν (NUPTKE=0.52)
- three level stencil in the vertical for the Newtonian relaxation ($1/\tau_{\varepsilon}$ are on half levels)
- relaxation and diffusion are computed at once
 tridiagonal matrix
- diffusion should dominate the relaxation
 ⇒ positive off-diagonal terms are not allowed
 (through R_l)

- two tuning parameters: $\tilde{K}_* = R_l \tilde{K}_n^{1-\gamma} \tilde{K}_m^{\gamma}$ (GAMTKE=0.5), ν (NUPTKE=0.52)
- three level stencil in the vertical for the Newtonian relaxation ($1/\tau_{\varepsilon}$ are on half levels)
- relaxation and diffusion are computed at once
 tridiagonal matrix
- diffusion should dominate the relaxation
 ⇒ positive off-diagonal terms are not allowed
 (through R_l)
- anti-fibrillation scheme works for TKE diffusion

ALARO Training Course, Radostovice, March 2007 – p. 11

۲

۲

•

1D model simulation with GABLS II experiment

Full TKE scheme vs. pTKE (GC mxl. length)

1D model simulation with GABLS II experiment

Full TKE scheme vs. pTKE (with mod GC mxl. length)

Full model results

500 hPa geopotential and 300 hPa wind

Full model results

TKE exp. base

Strong jet over northern Germany

TKE exp:zen tst2

TKE reference vs. modified GC mxl. length

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Parallel test

RMSE difference evolution of geopotential and temperature

•

new mixing length formulation

•

- new mixing length formulation
- generalization of ν

- new mixing length formulation
- generalization of ν
- further stabilization

- new mixing length formulation
- generalization of ν
- further stabilization
- shallow convection + $q_{l/i}$ problem

•

extension of the Louis scheme

•

- extension of the Louis scheme
- time stability (+ anti-fibrillation)

- extension of the Louis scheme
- time stability (+ anti-fibrillation)
- stable vertical staggering while full level TKE values

- extension of the Louis scheme
- time stability (+ anti-fibrillation)
- stable vertical staggering while full level TKE values
- special effort to stabilize the solver \rightarrow no negative TKE values (from physics)

- extension of the Louis scheme
- time stability (+ anti-fibrillation)
- stable vertical staggering while full level TKE values
- special effort to stabilize the solver \rightarrow no negative TKE values (from physics)
- offers elegant way to sequential convergence towards a full TKE scheme (mixing length, \tilde{E})

- extension of the Louis scheme
- time stability (+ anti-fibrillation)
- stable vertical staggering while full level TKE values
- special effort to stabilize the solver \rightarrow no negative TKE values (from physics)
- offers elegant way to sequential convergence towards a full TKE scheme (mixing length, \tilde{E})
- suitable for TL/AD code